DOT/FAA/EE/93-03 DOT-VNTSC-FAA-93-19 Office of Environment and Energy Washington, DC 20591 INM Integrated Noise Model Version 4.11 User's Guide - Supplement Gregg G. Flerning John R. D'Aprile John A. Volpe National Transportation Systems Center Acoustics Facility Cambridge, MA 02142-1093 S DTIC ELECTE DEC 17 1993 A Final Report December 1993 Supplement to Report No. DOT/FAA/EE/92/02 This document is available to the public through the National Technical Information Service, Springfield, VA 22161 This document has been approved for public telease and sale; its distribution is unlimited. U.S. Department of Transportation Federal Aviation Administration 93-30566 93 12 16 048 # Best Available Copy ## NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation. # NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. # REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 | Public reporting burden for this collectime for reviewing instructions, search completing and reviewing the collection aspect of this collection of information Services, Directorate for information Of 2202-4302, and to the Office of Manager | tion of information is estimated to average
ing existing data sources, gathering and m
of information. Send comments regarding
of including suggestions for reducing this
perations and Reports, 1215 Jefferson Davi
ment and Budget. Paperwork Reduction Proje | e 1 hour per response, including the mintaining the data needed, and this burden estimate or any other burden, to Washington Headquarters & Highway, Suite 1204, Arlington, VA ct (0704-0188), Mashington, DC 20503. | | | | | |--|--|--|--|--|--|--| | 1. AGENCY USE ONLY (Leave blank) | 3. REPORT TYPE AND DATES COVERED Final Report June 1992 - December 1993 | | | | | | | 4. TITLE AND SUBTITLE INM, Integrated Noise Model V User's Guide - Supplement | 5. FUNDING NUMBERS FA465/A4012 | | | | | | | 6. AUTHOR(S) Gregg G. Fleming, Edward J. I John R. D'Aprile | | | | | | | | 7. PERFORMING ORGANIZATION NAME(S) AND A U.S. Department of Transporta Research and Special Programs Volpe National Transportation Cambridge, MA 02142 | 8. PERFORMING ORGANIZATION REPORT NUMBER DOT-VNTSC-FAA-93-19 | | | | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) U.S. Department of Transports Federal Aviation Administration of Environment and Enc. 800 Independence Avenue, S.W Washington, DC 20591 | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER DOT/FAA/EE/93-03 | | | | | | | 11. SUPPLEMENTARY NOTES 1 Technology & Management Systems, Inc. 99 South Bedford Street, Suite 211 Burlington, MA 01803-5128 | . ² Unisys Corporation
Kendall Square
Cambridge, NA 02142 | | | | | | | | the public through the Natio | nal 12b. DISTRIBUTION CODE | | | | | | Technical Information Service, Springfield, VA 22161 13. ABSTRACT (Maximum 200 words) The John A. Volpe National Transportation Systems Center (Volpe Center), in support of the Federal Aviation administration, Office of Environment and Energy, has developed Version 4.11 of the Integrated Noise Model (INM). The User's Guide for the Version 4.11 computer software is a supplement to INM, Version 3, User's Guide - Revision 1 for the Version 3.10 computer software released in June, 1992. The Version 4.11 supplement, prepared by the Volpe Center's Acoustics Facility, presents computer system requirements as well as installation procedures and enhancements. Specific enhancements discussed include: (1) the introduction of a takeoff profile generator; (2) the ability to account for terrain elevation around a specified airport; (3) the ability to compute the CNEL, WECPNL, LEQDAY, and LEQNIGHT noise metrics; (4) the | | | | | | | | • | er Model, Noise Contou | _ | 15. NUMBER OF PAGES
82 | |--|---|--|----------------------------| | Model, Noise Level Pr | ediction, FAR Part 150 | | 16. PRICE CODE | | 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified | 20. LIMITATION OF ABSTRACT | ability to account for airplane runup operations; (5) the ability to account for displaced runway thresholds during approach operations; (6) an enhancement to the noise contour computations: (7) an increase in the number of takeoff profile segments; and (8) enhancements to the echo file. ## PREFACE This document was prepared by the John A. Volpe National Transportation Systems Center (Volpe Center), in support of the Federal Aviation Administration, Office of Environment and Energy. It is a User's Guide for the Integrated Noise Model (INM) Version 4.11 computer software used to predict noise impact around airports. This User's Guide is a supplement to INM, Version 3, User's Guide - Revision 1, which was released in June, 1992, along with the INM Version 3.10 computer software. The Version 4.11 supplement, prepared by the Volpe Center's Acoustics Facility, presents computer system requirements as well as installation procedures and INM Version 4.11 enhancements. | Accesion For | | | | | | | |---------------------------|-------------------------|-----------|-----|--|--|--| | DTIC | CRA&I
TAB
lounced | | Z C | | | | | Justifi | | ********* | L) | | | | | By
Distribution / | | | | | | | | Availability Codes | | | | | | | | Dist Avail and/or Special | | | | | | | | A-1 | | | | | | | A CHIORICAN TIMEAUS DIAG | | OM) IS | OM) *IS | DERN ME | TRIC) | CONVERSION | FACTO | RS | JRS | | |---------------|---|----------------------------|------------------------|------------|-------------|----------------------|------------------------------|-------------------------------|--------| | | APPROXIMATE CONVERSIONS TO | NVERSIONS TO | SI UNITS | į | | | NVERSIONS FI | STIND IS MOF | | | Symbol | When You Know | Multiply By | To Find | Symbol | Symbol | When You Know | Multiply By | To Find | Symbol | | | _ | LENGTH | | | | | LENGTH | ı | | | ء. | inches | 25.4 | milimeters | E | E | millimeters | 0.039 | inches | .5 | | = | leet | 0.305 | meters | E | £ | meters | 3.28 | 100 | = | | Ž | yards | 0.914 | meters | E | Ε | meters | 90. | yards | ጀ. | | Ē | miles | 1.61 | kilometers | Ę | 5 | kilometers | 0.621 | nies
1 | Ē | | | | AREA | | | | | AREA | 1 | | | :
= | | 646.9 | | | | milimaters countries | 0.0016 | souere inches | 2 | | š 3 | square inches | \$45.2
0.003 | millimeters squared | , we | | | 10.00 | scribbe feet | : 2 | | . ¥ | square rest | 0.033 | meters squared | ΕÌ | ĒĒ | meters sourced | 1.195 | square yards | 2 | | 2.8 | | 0.405 | menus squared | E 2 | . 2 | hectares | 2.47 | 8078 | Ē | | Ē | squere miles | 2.59 | kilometers sourred | , E | km, | Mometers squared | 0.386 | square miles | | | | | VOLUME | | | | | VOLUME | 1 | | | ;
; | #: 4.4 oction | 20 67 | | 1 | 7 | militinose | 0 034 | field concess | S OZ | | 70 E | | 78.57
3 785 | | Ē. | = - | Flore | 0.264 | aefors | 70 | | 3 2 | gaacus
cubic feet | 0.028 | BIO/S
motore cribed | | . Ê | meters cubed | 35.71 | cubic feet | 2 | | <u>\$</u> | cubic yards | 0.765 | meters cubed | Ê | Ê | meters cubed | 1.307 | cubic yards | Š. | | NOTE | NOTE: Volumes greater than 1000 I shall be shown in | O I shall be shown in | æ, | | | | | | | | | | MASS | | | | | MASS | ſ | | | 20 | OUNCOS | 28.35 | | | • | grams | 0.035 | saouno | 20 | | <u>.</u> | spunod | 0.454 | kijograms | 200 | , <u>S</u> | kilograms | 2.202 | ponuds | £ | | - | short tons (2000 lb) | 0.907 | mogagrams | Ž | Z | megagrams | 1.103 | short tons (2000 lb) | | | | TEMPER | TEMPERATURE (exact) | | | | TEMPE | TEMPERATURE (exact | द्ग | | | ļ. | Fahrenheit | 5(F-32)/9
or (F-32)/1.8 | Celclus | ပ္ | ပ္ | Celcius | 1.8C + 32 | Fahrenheit
temperature | ů. | | | | ILLUMINATION | | | | | ILLUMINATION | | | | 오゠ | foot-candles
foot-Lamberts | 10.76
3.426 | hx
cendels/m² | r
cd/m² | tx
cd/m³ | hx
candola/m³ | 0.0929 | Noot-candles
foot-Lamberts | 5 = | | | FORCE and PR | FORCE and PRESSURE or STI | RESS | | | FORCE
and F | FORCE and PRESSURE or STRESS | STRESS | | | Z | poundforce | 4.45 | newtons | z | z | newtons | 0.225 | poundiorce | ē | | <u> </u> | poundforce per
square inch | 6.89 | kilopascals | KP. | ₽
B | kilopascals | 0.145 | poundforce per
squere inch | ä | | | | | | | | | | | | # TABLE OF CONTENTS | Section | | : | Page | |---------|--------------------------|---|--------------------------| | 1. | INTROD | DUCTION | 1-1 | | | 1.1
1.2 | Computer System Requirements | 1-1
1-1 | | | | 1.2.1 RAM Disk Installation | 1-2 | | 2. | IMPLEM | MENTATION OF INM VERSION 4.11 ENHANCEMENTS | 2-1 | | | 2.1
2.2
2.3 | Takeoff Profile Generator | 2-3 | | | 2.4
2.5
2.6
2.7 | Airplane Runup Operations | 2-8
-10
-11
-11 | | 3. | | INCES | | | APPENI | DIX A: | REVISIONS TO INM ALGORITHMS | A-1 | | | | A.1 Flight Significance Testing | A-1
A-2
A-4 | | APPEND | OIX B: | TAKEOFF PROFILE GENERATOR | B-1 | | | | B.1 Standard Conditions (15°C, Zero ft MSL) | B-7 | | APPENI | OIX C: | AIRPLANE RUNUP OPERATIONS | C-1 | | | | C.1 Verification | | | APPEND | OIX D: | INM INPUT TESTCASE | D-1 | | APPEND | IX E: | WINM USER'S MANUAL | E-1 | # LIST OF FIGURES | Figure | <u>Page</u> | |--------|---| | 2-1 | BETA ANGLE FOR INM VERSION 3.10 AND BEFORE2-6 | | 2-2 | BETA ANGLE FOR INM VERSION 4.112-6 | | 2-3 | RUNWAY DEFINITION2-10 | | A-1 | DIPOLE DIRECTIVITY PATTERN, INM VERSION 3.10 AND BEFORE | | A-2 | MODIFIED DIRECTIVITY PATTERN, INM VERSION 4.11 | | A-3 | SEL TAKEOFF FOOTPRINT COMPARISON FOR B737-200 AIRPLANE | | A-4 | LDN CONTOUR COMPARISON FOR INM INPUT TESTCASE | # LIST OF TABLES | Table | | <u>Page</u> | |-------|--|-------------| | A-1 | INM VERSION 4.11 DATA BASE AIRPLANE DEFINITIONS | .A-4 | | B-1 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F, ELEVATION 0 FT MSL | B-11 | | B-2 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F, ELEVATION 0 FT MSL | B-13 | | B-3 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F, ELEVATION 0 FT MSL | B-15 | | B-4 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F, ELEVATION 3000 FT MSL | B-17 | | B-5 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F, ELEVATION 3000 FT MSL | B-19 | | B-6 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF
THE PROFILE GENERATOR, TEMPERATURE 80°F,
ELEVATION 3000 FT MSL | B-21 | | B-7 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F, ELEVATION 6000 FT MSL | B-23 | | B-8 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF
THE PROFILE GENERATOR, TEMPERATURE 40°F,
ELEVATION 6000 FT MSL | B-25 | | B-9 | RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F, ELEVATION 6000 FT MSL | B-27 | ## 1. INTRODUCTION During June, 1992, through December, 1993, the John A. Volpe National Transportation Systems Center (Volpe Center), in support of the Federal Aviation Administration, Office of Environment and Energy, developed Version 4.11 of the Integrated Noise Model (INM). The User's Guide for the Version 4.11 computer software, prepared by the Volpe Center's Acoustics Facility, is a supplement to the Integrated Noise Model (INM), Version 3, User's Guide - Revision 11 for the Version 3.10 computer software released in June, 1992. Section 1.0 of the supplementary document presents computer system requirements and installation procedures for INM Version 4.11. Section 2.0 describes the user's implementation of several new capabilities, including descriptive examples. Appendix A describes the technical revisions made to several internal algorithms primarily revisions which are transparent to INM users. Appendices B and C, respectively, present a technical discussion of two new capabilities, the takeoff profile generator and the capability to account for airplane runup operations. Appendix D presents a copy of the INM Input Testcase, revised to reflect INM Version 4.11 enhancements. Appendix E contains a copy of the User's Manual for the WINM computer software, an INM Version 4.11 plotting program for use with Microsoft Windows. ## 1.1 Computer System Requirements INM Version 4.11 operates on an IBM Personal Computer (PC)-Compatible platform with the following minimum configuration: - IBM PC-AT or compatible, Series 286 microprocessor; - 3 MB of available hard disk space; - 590 KB of Random Access Memory (RAM) or 3 MB of RAM, if operating the INM from a RAM disk, as discussed in Section 1.2.1 below; - Math co-processor, Series 80287; and - Microsoft-compatible Disk Operating System (MSDOS) Version 3.3. In addition, the CONFIG.SYS file on the PC slated for INM Version 4.11 installation must contain the following lines: BUFFERS=30; and FILES=30. ### 1.2 Installation The files on the INM Version 4.11 system diskette have been stored in a compressed format using the PKZIP Version 1.1 utility software [Copyright (c) 1990 PKWare, Inc.]. With the source drive prompt displayed on the screen, execute the UNPACK batch file to install INM Version 4.11 on your PC: ## • UNPACK <SOURCE DRIVE> <TARGET DRIVE> For example, the command UNPACK A C will install, from the A drive, INM Version 4.11 on the C drive in a subdirectory called INM411. Note: The UNPACK batch file will, without prompting, overwrite the contents of subdirectory INM411, if one exists on the user-specified target drive. #### 1.2.1 RAM Disk Installation Operation of INM Version 4.11 on a RAM disk will improve computation time by an estimated 5 to 15 percent, as compared to operating it from a hard-disk drive. RAMDRIVE.SYS, an installable device driver supplied with Microsoft-compatible DOS, allows a user to configure part of the PC's RAM as if it were a hard disk (i.e., a RAM disk, sometimes referred to as a virtual disk). The following is an example installation of INM Version 4.11 onto a RAM disk. The user is referred to the DOS manual and/or the manual supplied with any memory management software being used if difficulties should occur. To install RAMDRIVE.SYS for use with INM Version 4.11, the following command line should be included in the CONFIG.SYS file: #### DEVICE=C:\DOS\RANDRIVE.SYS 3000/E Upon including the above command line in the CONFIG.SYS file, the PC must be rebooted. After rebooting, the PC will have a 3 MB RAM drive located in extended memory. The RAM drive's logical, alphabetical drive designation will be one letter higher than the highest current physical drive on the PC (e.g., if a PC has a 5% inch Adrive, a 3% inch B-drive, and a hard-disk C-drive, upon rebooting, the RAM drive will be designated the D-drive). The user may now install the INM software on the RAM drive by designating it as the target drive for installation. For example: ## A:\UNPACK A D The above command will automatically install the INM from the A-drive onto a subdirectory (INM411) on the RAM drive (i.e., in this example the D-drive). The RAM drive must now be logically connected to the hard drive using DOS's JOIN command. To accomplish this, an empty subdirectory, e.g., C:\RAM, must be created on the hard drive. From within that subdirectory execute the following command: ## C:\RAM\JOIN D: C: This will assign the RAM drive, i.e., the D-drive, to operate within the subdirectory C:\RAM on the hard drive. Note: It is extremely important to remember that each time the PC is reset or its power is turned off, the information stored on the RAM drive will be lost. As a result, i. the INM is run from the RAM drive, all files must be copied to a physical drive, e.g., a floppy drive, prior to powering-off the PC. ## 2. IMPLEMENTATION OF INM VERSION 4.11 ENHANCEMENTS This Section of the document describes the methodology for implementing INM Version 4.11 enhancements. It includes a background discussion of the enhancements, a brief discussion of the need for the enhancements, and example implementation of the enhancements. The following enhancements are discussed: (1) the takeoff profile generator; (2) the ability to account for terrain elevation around a specified airport; (3) the ability to compute the CNEL, WECPNL, LEQDAY, and LEQNIGHT noise metrics; (4) the ability to account for airplane runup operations; (5) the ability to account for runway thresholds during approach operations; (6) an enhancement to the noise contour computations; (7) an increase in the number of takeoff profile segments; and (8) enhancements to the echo file. #### 2.1 Takeoff Profile Generator This enhancement allows for the computation of airplane takeoff profiles based on the user-supplied airport elevation and temperature entry in the SETUP section of the INM input file. The takeoff profiles are utilized by the INM in the computation of all noise metrics. Previous versions of the INM utilize takeoff profiles which were based on standard-day conditions, i.e., temperature of 59°F and airport elevation of zero ft Above Mean Sea Level (MSL). Previously, the user-supplied airport elevation (altitude) and temperature were only used to compute an atmospheric acoustic impedance correction. The takeoff profile generator is made possible by the inclusion of standardized airplane operating procedures and performance coefficients in Data Base Number 11. procedures and coefficients are presented in References 2, 3, and 4, and accessible from the Data Base using the ACDB11.EXE computer program, supplied with the Version 4.11 release. With the exception of INM airplane numbers 1, 6, 7, 8, 10, 24, 56, 100, 101, and four of the new airplanes (INM airplane numbers 104 to 107) discussed further in Appendix A, the operating procedures and performance coefficients required for takeoff
profile computation are included in Data Base Number For the airplanes without standard procedures and coefficients the takeoff profile for standard conditions is assumed regardless of the airport elevation and temperature. Note: The incorporation of the takeoff profile generator will not affect the standard approach profiles. The approach profiles are the same as employed in INM Version 3.10. Operation of the profile generator is time-efficient and entirely transparent to the user. If other than standard-day conditions are specified by the user in the SETUP portion of the input file, the profile generator automatically computes the takeoff profiles using the airplane performance coefficients in Data Base Number 11 and the equations in the Society of Automotive Engineers Aerospace Information Report 1845⁵ (SAE/AIR 1845). When an airport elevation and temperature is not specified, the INM assumes standard conditions and utilizes the standard profiles included with Data Base Number 11, i.e., the internal profile generator will not be exercised. To insure the takeoff profiles and resultant noise metrics computed by INM Version 4.11 are reasonable for the user-defined input case, a runway length check has been instituted. When the computed ground roll segment of the takeoff profile exceeds the user-specified runway length, the user is notified of the discrepancy. A message similar to the following is included in the echo file. WARNING: COMPUTED GROUND ROLL ERROR FOR INM AIRPLANE 747200, STAGE WEIGHT 7, -- EXCEEDS USER-DEFINED RUNWAY LENGTH BY X PERCENT FOR THE TAKEOFF ON TRACK TR1, RUNWAY 091. In main, cases this warning will indicate to the user that there is an error in the input file, possibly in the user-defined average yearly temperature, airport elevation, airport runway length, or airplane stage weight. In cases where the computed ground roll segment exceeds the runway length by more than 10 percent, the above message will be included in the echo file as a fatal error rather than a warning and the user will not be permitted to continue processing of the input case. There may be instances where the user has correctly defined the input case and the computed ground roll segment exceeds the runway length by more than 10 percent. This apparent anomaly may be the result of using the average yearly temperature at the airport as an input. For example, a particular airport may be capable of operating a high stageweight B747 airplane in the early evening or during winter months only, when the temperature is significantly lower than the average yearly temperature. In such cases it is suggested that a user-defined profile be included in the input file. In addition, there may be instances (e.g., high stage weights, high temperatures, and high airport elevations combined) where a negative rate-of-climb is computed. Consequently, a fatal error will occur and a profile will not be generated. In such instances, the user will be notified with a message similar to that below; it is suggested that a user-defined profile be included in the input file. • FATAL: PROFILE FOR INM AIRPLANE 747200, STAGE WEIGHT 7 CANNOT BE COMPUTED. A technical discussion of the takeoff profile generator is presented in Appendix B. In addition, Appendix B presents tables which summarize the runway requirements and operational boundaries of the profile generator. These tables are presented for various combinations of airport elevation and temperature intended to cover the range of average yearly conditions at airports across the United States. #### 2.2 Terrain Elevation This user-selectable enhancement included with INM Version 4.11 allows for the computation of source-to-receiver slant range, i.e., propagation distance, based upon actual terrain elevation at receiver locations around a specified airport. The implementation of this enhancement can result in a vast improvement in the accuracy of the noise computations at located hilly terrain, airports near however implementation will result in an increase in computation time by an estimated 50 to 100 percent. To utilize this enhancement, INM Version 4.11 users must have the United States Geological Survey (USGS) 3 Arc Second Elevation Data on CD-ROM, available from: Rocky Mountain Communications, Inc. (RMC) 2023 Montane Drive East Golden, CO 80401 (303) 526-5454 (303) 526-2662 (FAX) The USGS data are available for the entire United States or parts thereof. Prior to implementing the elevation enhancement within INM Version 4.11, the preprocessing program, MAKEFILE.EXE, which is included with the Version 4.11 distribution package, must be run on the RMC Digital Elevation Model (DEM) files. MAKEFILE.EXE constructs a 2.8 MB, one-degree by one-degree, geodetic data file with the user-specified airport located at the geographic center of the file. The file generated by MAKEFILE.EXE, which has a three-letter user-defined prefix and a .3CD extension (e.g., Boston's Logan International Airport might be designated BOS.3CD), will be used by INM Version 4.11 to compute the source-to-receiver slant range. Use of the MAKEFILE.EXE program is described below. With the drive prompt displayed on the screen, type MAKEFILE to invoke the program. ## • C:\INM411\ MAKEFILE MAKEFILE.EXE will then prompt the user to enter a three-letter airport identification, e.g., BOS, and the latitude and longitude of a reference point at the airport (e.g., the beginning of the primary runway). In the following example the latitude and longitude are for the start of Runway 09L at Boston-Logan. - e ENTER 3 LETTER AIRPORT IDENTIFIER (EX. BOS): BOS - e ENTER RUNWAY LAT COORD. DEGS MINS SECS (EX. 42 21 20): 42 21 20 - ENTER RUNWAY LON COORD. DEGS MINS SECS (EX. 71 00 48): 71 00 48 The MAKEFILE.EXE program then computes the coordinates of the southeast corner of a one-degree by one-degree data-block based upon the start of the airport's primary runway being at the geographic center of the block. The computed southeast corner is displayed along with the four RMC DEM files required to construct the one-degree Ly one-degree data-block around the airport. The user is also given the option to overwrite an existing or create a new BOS.3CD file, where BOS is the three-letter airport identifier. - THE SE CORNER OF THE REQUIRED (1X1 DEG) DATA BLOCK IS: 41 52 70 31 - THE REQUIRED DEM FILES ARE: NW FN=42071.3CD NE FN=42070.3CD SW FN=41071.3CD SE FN=41070.3CD - DO YOU WISH TO CREATE A NEW BOS.3CD FILE (Y/N) ? Y The user should type \underline{Y} to overwrite/create a new file. If the four DEM files exist in the current directory, the program will create the BOS.3CD file without further prompting. MAKEFILE.EXE cannot find the required DEM files, it will request that the user enter the drive where the DEM files are resident. In addition, MAKEFILE.EXE will ask if the data are on the RMC CD-ROM and, if so, copy them into the current directory. If the four DEM files are not on the CD-ROM drive, MAKEFILE.EXE will request the path where the files can be The program will then construct the required onefound. degree by one-degree data-file, with the airport's primary runway at its approximate geographic center. The user will be informed that the file has been constructed, and the minimum and maximum elevation within the constructed one-degree by one-degree block will be provided. #### WRITING OF BOS.3CD IS COMPLETE The example BOS.3CD file is now ready for implementation by the INM. To utilize the elevation data in the BOS.3CD file in the computation of source-to-receiver slant range, the user must specify, in the SETUP portion of the INM input file: (1) the three-letter airport code which identifies the specific user pre-processed .3CD file; (2) the disk-drive location of the .3CD file (Note: It is not necessary to specify the location of the .3CD file if it is in the current directory; also, if the .3CD file resides in a subdirectory, the path to that subdirectory must be created prior to running INM.); and (3) the latitude and longitude of a user-defined reference point at the airport, where the X and Y coordinates of all defined runways must be referenced to this point. To insure that the user has identified the appropriate .3CD file, the INPUT.EXE program will test the user-defined reference point at the airport against the stored reference in the .3CD file. In the following example the user has: (1) specified Boston's Logan International Airport; (2) identified the C-drive as the location for the BOS.3CD file; and (3) specified the latitude and longitude of a reference point at Boston-Logan. #### • SETUP: TITLE <EXAMPLE IMPLEMENTATION OF ELEVATION ENHANCEMENT> AIRPORT <ELEVATION EXAMPLE> CODE BOS DRIVE C LATITUDE 42 21 20 LONGITUDE 71 00 48 With the elevation enhancement invoked as described above, all noise-level computations are performed based upon the actual source-to-receiver slant range, rather than assuming a flat terrain as was the case in previous versions of the INM. In addition, the data in the BOS.3CD file are used to compute the slope of a three-by-three arc-second tangential ground plane, with the receiver at its physical center. This ground plane is used in the computation of the source-to-receiver elevation-angle, beta, required by the lateral attenuation algorithm in the INM. The beta angle is defined as the angle subtended by the propagation path from the airplane to the receiver and the three-by-three arc-second ground plane. Figures 2-1 and 2-2, respectively, depict the beta angle for two scenarios: (1) previous versions of the INM (i.e., flat terrain); and (2) INM Version 4.11. ## 2.3 CNEL, WECPNL, LEQDAY, and LEQNIGHT Noise Metrics The capability to compute four additional noise metrics has been included in INM Version 4.11. They are the Community Noise Equivalent Level (CNEL), Weighted Equivalent Continuous Perceived Noise Level (WECPNL), Equivalent Sound Level During Daytime Hours (LEQDAY), and Equivalent Sound Level During
Nighttime Hours (LEQNIGHT). The addition of these four metrics brings the total number of metrics available for computation by the INM to eight (NEF, LEQ, LDN, TA, CNEL, WECPNL, LEQDAY, and LEQNIGHT). As was the case in previous # Scenario 1 FIGURE 2-1: BETA ANGLE FOR INM VERSION 3.10 AND BEFORE # Scenario 2 FIGURE 2-2: BETA ANGLE FOR INM VERSION 4.11 versions of the INM, Version 4.11 allows for the computation of all metrics simultaneously in grid mode or a single user-defined metric in contour mode for a given input case. A brief description of the CNEL, WECPNL, LEQDAY, and LEQNIGHT noise metrics follows: (1) Community Noise Equivalent Level (CNEL): The CNEL noise metric, which is primarily used in California, is similar to the Day-Night Sound Level (LDN) metric in that it incorporates the energy-averaged A-weighted sound level integrated over a 24-hour period. However, unlike LDN, CNEL incorporates an additional penalty for operations occurring between the evening hours of 1900 and 2200 hours. For CNEL, a 3 dB penalty is applied to operations occurring between 1900 and 2200 hours, and a 10 dB penalty is applied to operations occurring between 2200 and 0700 hours. The equation for computing CNEL within the INM is as follows: CNEL = SEL + $10\log_{10}(N_{day} + 3N_{eve} + 10N_{night}) - 49.4$, where SEL = Sound Exposure Level in dBA; N_{day} = number of operations between 0700 and 1900 hours local time; N_{eve} = number of operations between 1900 and 2200 hours local time; N_{night} = number of operations between 2200 and 0700 hours local time; and 49.4 = constant which normalizes CNEL to a 24-hour period, (i.e., 10log₁₀ (1/86,400 sec/day) = -49.4). (2) Weighted Equivalent Continuous Perceived Noise Level (WECPNL): The WECPNL noise metric, which is primarily used by the European Community, is based upon the PNLT noise metric and is computed within the INM as follows: WECPNL = EPNL + $10\log_{10}(N_{day} + 3N_{eve} + 10N_{night}) - 39.4$, where all definitions are the same as in CNEL, above, except: EPNL = Effective Perceived Noise Level in dB; and 39.4 = (49.4 - 10); where 49.4 is the constant which normalizes WECPNL to a 24-hour period, (i.e., $10\log_{10}(1/86,400 \text{ secs/day}) = -49.4$); and -10 is the duration normalizing factor in the definition of EPNL.⁶ (3) Equivalent Sound Level During Daytime Hours (LEODAY): The LEQDAY noise metric is an energy summation of the aggregate environment, as measured in A-weighted decibel units (dBA) normalized to the 15-hour time period from 0700 to 2200. The equation for computing LEQDAY within the INM is as follows: LEQDAY = SEL + $10\log_{10}(N_{day} + N_{eve}) - 47.3$, where all definitions are the same as in CNEL, above, except: - 47.3 = constant which normalizes LEQDAY to the 15-hour period from 0700 to 2200, (i.e., $10\log_{10}(1/54,000 \text{ sec}) = -47.3$). - (4) Equivalent Sound Level During Nighttime Hours (LEONIGHT): The LEQNIGHT noise metric is an energy summation of the aggregate environment, as measured in A-weighted decibel units (dBA) normalized to the 9-hour time period from 2200 to 0700. The equation for computing LEQNIGHT within the INM is as follows: LEQNIGHT = SEL + $10log_{10}(N_{night})$ - 45.1, where all definitions are the same as in CNEL, above, except: 45.1 = constant which normalizes LEQNIGHT to the 9-hour period from 2200 to 0700, (i.e., $10\log_{10}(1/32,400 \text{ sec}) = -45.1$). ## 2.4 Airplane Runup Operations This enhancement allows INM Version 4.11 to compute noise levels due to airplane engine runup operations. The need for this particular enhancement is recognized primarily around airplane maintenance facilities. To invoke this capability the user must define an airplane runup in the TAKEOFF section of the input file as follows: • INT.NM. TAKEOFFS BY FREQUENCY: TRACK RU1 RWY 09L STRAIGHT 50 OPERATION 747200 RUNUP 1 D=30 OPERATION 747200 STAGE 4 D=80 <OR> OPERATION 747200 STAGE 4 D=80 RUNUP 1 D=30 In the above example, a 30 second (D=30) runup operation is defined for a B747-200 airplane operation at the thrust setting of Stage Weight 1. The runup, as specified, takes place on a runway designated as 09L and a track designated as RU1. STRAIGHT 50 defines the length of the track in nautical miles. In fact, the track length for runup operations is ignored in the computation of runup noise. For runup noise computations it is assumed that the airplane covers a track with an arbitrarily chosen fixed length of 20 ft. The specific location and heading of the runup operation in the above example must be defined in the RUNWAYS section of the input file as shown in the following: ## RUNWAYS RW 09L-27R 0 0 TO 9487 -497 In the above example, the runup operation takes place at the start of an active runway, i.e., Runway 09L. If the user wants to define a runup operation at a location at the airport other than on an active runway, e.g., at a maintenance facility, then the maintenance facility must be defined as if it were a runway. Here it is suggested that a maintenance facility, or any other location specified for a runup operation, be defined as a runway which is 20 ft in length. The definition of a maintenance facility as a 20 ft runway is shown in the following example. #### RUNWAYS RW 13-31 0 5000 TO 20 5000 The above runup definitions assume that the full-power takeoff thrust associated with the user-defined stage weight is maintained for the duration of the runup. However, runup operations can occur at other than full-power thrust. To model such instances, a user-defined runup should be included in the input file as follows: # AIRCRAFT: TYPES AC 747200 STAGE 1=RU ## PROFILES TAKEOFF PF RU SEGMENTS=3 WEIGHT=525000 ENGINES=4 DISTANCES 0 10 20 ALTITUDES 0 0 0 SPEEDS 160 160 160 THRUSTS 35022 35022 INT.NM. TAKEOFFS BY FREQUENCY: TRACK RU1 RWY 09L STRAIGHT 50 OPERATION 747200 RUNUP 1 D=30 In addition, the specific location, e.g., the start of a runway or at a maintenance facility, and heading of the runup operation in the above user-defined example must be specified in the RUNWAYS section of the input file as discussed earlier in this section. A technical discussion of the airplane engine runup capability is presented in Appendix C. # 2.5 Approach Runway Thresholds The capability to account for displaced runway thresholds for approach operations has been added to INM Version 4.11. previous versions of the INM, the runway touch-down point was assumed to be a fixed 954 ft from the edge of the runway for airplanes with a three degree approach glide slope, and 572 ft for the four airplanes with a five degree approach glide slope (INM airplane numbers 74 to 77). With INM Version 4.11, a user-defined displaced threshold (DT), either positive or negative, is added to the fixed runway touch-down point. insure realistic DT's are defined by the user, they are checked versus the runway coordinates. If discrepancies exist, the user is notified in the echo file, as appropriate. In the following example, a 1454 ft runway touch-down point has been defined in the SETUP section of the input file for Runway 09L (i.e., 500 ft for the user-defined DT plus 954 ft for the fixed touch-down point); and a runway touch-down point of 954 ft has been defined for Runway 27R: ## • SETUP: TITLE <EXAMPLE IMPLEMENTATION OF APPROACH RUNWAY THRESHOLD> AIRPORT <RUNWAY THRESHOLD EXAMPLE> ALTITUDE 23 TEMPERATURE 12.66 C #### RUNWAYS RW 09L-27R 0 0 <u>DT 500</u> TO 9487 -497 <u>DT 0</u> <OR> RW 09L-27R 0 0 <u>DT 500</u> TO 9487 -497 The above runway definition is depicted graphically below: FIGURE 2-3: RUNWAY DEFINITION The inclusion of the 500 ft user-defined DT results in a runway touchdown point 1454 ft from the start of Runway 09L (i.e., 500 ft for the user-defined DT plus 954 ft for the fixed touch-down point). # 2.6 Noise Contour Computations INM Version 4.11 provides, in the echo file, a warning to users when there are insufficient grid points to accurately compute a specific noise contour. In previous versions, the INM would automatically make the determination that there were insufficient grid points, and return a run-time error to the computer display without further explanation. The INM's noise computation window must be redefined to encompass additional grid points in the area of interest. If the user-defined computational window is too coarse to allow computation of a requested contour or the requested contour is not encompassed by the window, INM Version 4.11 will include a message in the echo file which is similar to the following: • CONTOUR CONTOUR AREA LEVEL (SQ. MILES) CN 3 *WARNING: LDN 30.0 CONTOUR DOES NOT EXIST In the above example, the defined window was either too coarse to reliably compute the user-requested 30 dB LDN contour or the contour was not encompassed by the window. ## 2.7 Takeoff Profile Segments INM Version 4.11 provides for user-defined takeoff profiles with up to 18 segments. Previous versions of the INM limited the number of segments to 14. This enhancement allows for more precise user-defined takeoff profiles. It will also more easily facilitate the incorporation of a flight-procedure generator planned for a future version of the INM, since certain procedures may require higher resolution profiles, and thus more segments. ## 2.8 Echo File All output reports generated by INM Version 4.11 have been modified to account for the enhanced capabilities discussed in Section 2.0, above. #### 3. REFERENCES - Flythe, M.C., <u>Integrated Noise Model Version 3. User's Guide Revision 1</u>, Report No. DOT/FAA/EE-92/02, Arlington, VA: CACI, Inc. Federal, June 1992. - Bishop, D.E., Mills, J.F., <u>Update of Aircraft Profile Data for the Integrated Noise Model Computer Program, Volume 1</u>, Report No. FAA-EE-91-02, Canoga Park, CA: Acoustical Analysis Associates, Inc., March 1992. - Bishop, D.E., Mills, J.F., <u>Update of Aircraft Profile Data for the Integrated Noise Model Computer Program, Volume 2</u>, Report No. FAA-EE-91-02, Canoga
Park, CA: Acoustical Analysis Associates, Inc., March 1992. - Bishop, D.E., Mills, J.F., <u>Update of Aircraft Profile Data for the Integrated Noise Model Computer Program, Volume 3</u>, Report No. FAA-EE-91-02, Canoga Park, CA: Acoustical Analysis Associates, Inc., March 1992. - Procedure for the Calculation of Airplane Noise in the Vicinity of Airports, SAE/AIR 1845, Warrendale, PA: Society of Automotive Engineers Committee A-21, Aircraft Noise, 1986. - Federal Aviation Regulations, Part 36, Noise Standards: Aircraft Type and Airworthiness Certification, Washington, D.C.: Federal Aviation Administration, December 1988. #### APPENDIX A #### REVISIONS TO INM ALGORITHMS This Appendix discusses, in general terms, revisions to several algorithms and subroutines included in INM Version 4.11. It also discusses the rationale for these revisions and presents their effects on the noise contours, where applicable. The associated computer source code is not included. All revisions discussed below are transparent to the user in that they do not affect useroperation of the INM. However, these revisions will result in more accurate INM noise predictions and an increase in INM computational efficiency. They include: (1) revisions to significance testing within the INM; (2) implementation of a directivity smoothing equation; (3) revisions to the dipole directivity pattern within the INM; and (4) revisions to the INM Data Base. ## A.1 Flight Significance Testing The methodology employed for determining flight noise significance during grid computations has been streamlined in INM Version 4.11. Rather than looping through each of the first four refinement levels individually and constructing the noise grid on a level-by-level basis, INM Version 4.11 begins by constructing the 17-by-17 point regular grid previously associated with the fourth refinement level, and setting all parameters associated with the 289 total points, including the noise significance flags for each point. In restructuring the flight significance methodology, it was discovered that INM Version 3.10 was performing unnecessary (i.e., insignificant) noise computations due to improper setting of the flight significance flags. This impropriety had no effect on the computed noise levels but it did increase run-time unnecessarily. Revising the methodology for grid development, including the proper setting of flight significance flags, improved computation time by an estimated 40 percent over INM Version 3.10, for comparable input cases. ## A.2 Directivity Smoothing Equation The directivity algorithm of SAE/AIR 1845 implemented for receivers behind start-of-takeoff roll, which is based on field-measured data published in 1980, has been maintained within INM Version 4.11. However, a directivity smoothing equation, operating as a function of distance, has been implemented. In previous versions of the INM, the directivity algorithm is applied to noise levels behind start-of-takeoff-roll regardless of lateral distance. In the 1980 study, measurements were made at distances from start-of-takeoff-roll of only 970 to 1280 ft. Recent studies^{6,7} have indicated that INM Version 3.10 tends to underpredict noise levels behind start-of-takeoff-roll at distances of 3000 to 5000 ft, well beyond those represented in the 1980 study. This underprediction was especially evident for measurements made directly behind the airplane where the reduction in noise level due to the directivity algorithm is most pronounced. As a result, an equation has been incorporated into INM Version 4.11 which smooths out the directivity effect as a function of distance behind the airplane, beginning at a distance of 2500 ft. The smoothing algorithm reduces the directivity effect in decibels by a factor of 50 percent per doubling of distance behind the airplane, beginning at a distance of 2500 ft. For example, a noise level attenuation of 10 dB computed by the directivity algorithm at a distance of 2500 ft will be reduced to 5 dB at 5000 ft due to the smoothing equation. The smoothing equation built into INM Version 4.11 was empirically and conservatively derived from the data of Reference 6, the more detailed study of the two cited above. However, it is strongly recommended that additional measurments behind start-of-takeoff-roll be performed at a variety of offset distances and azimuth angles at several sites across the country to fine-tune the smoothing equation. # A.3 Dipole Directivity Pattern The 90° dipole directivity pattern was originally instituted within the INM as a means of approximating the directivity characteristics Although the exact directivity of an airplane in flight. characteristics are a function of parameters such as airplane type, power setting, speed, and distance, the dipole model has served as a reasonable approximation. In INM Version 4.11, the 90° dipole directivity pattern has been modified. Figures A-1 and A-2 depict the dipole directivity pattern of INM Version 3.10 and earlier modified pattern of INM Version 4.11, and the versions, respectively. For INM Version 4.11, the original dipole directivity directly in front of and behind the airplane has been In addition, the directivity algorithm of SAE/AIR suppressed. 1845, with the addition of the smoothing equation discussed in Section A.2 above, is applied behind the airplane for all modes of operation. See Appendix C for a discussion of the appropriateness of the modified directivity pattern for runup operations. FIGURE A-1: DIPOLE DIRECTIVITY PATTERN, INM VERSION 3.10 AND BEFORE FIGURE A-2: MODIFIED DIRECTIVITY PATTERN, INM VERSION 4.11 The effect of the modified directivity pattern on the noise contours is depicted in Figures A-3 and A-4, below. Figure A-3 shows the effect on the SEL footprint for a single takeoff operation of the B737-200 airplane (INM number 47). Figure A-4 shows the effect on the LDN contour for the INM Input Testcase provided with INM Version 3.10. ---- INM VERSION 3.10 AND BEFORE INM VERSION 4.11 FIGURE A-3: SEL TAKEOFF FOOTPRINT COMPARISON FOR B737-200 AIRPLANE FIGURE A-4: LDN CONTOUR COMPARISON FOR INM INPUT TESTCASE ## A.4 Data Base Number 11 Data Base Number 11 has been created through modifications, consisting primarily of the removal of artifacts from previous versions of the Data Base, and the addition of six new airplanes. As discussed in Section 2.1, Data Base Number 11 was expanded to include airplane performance coefficients and standard flight procedures required for use with the takeoff profile generator. With the exception of INM airplane numbers 1, 6, 7, 8, 10, 24, 56, 100, 101, and four of the new airplanes discussed below, procedures and coefficients required for profile generation are included in the Data Base. For those airplanes without standard flight procedures and coefficients, the takeoff profile for standard conditions is utilized regardless of airport elevation and temperature. In addition, six new airplanes have been added to Data Base Number 11 (See Table A-1). They include the MD11 with the CF6-80C2D1F and PW4460 engines (INM numbers 102 and 103, respectively), the F-16A with the F100-PW-200 engine (INM number 104), and the F-16C/D with the F110-GE-100, F100-PW-220, and F100-PW-229 engines (INM numbers 105, 106 and 107, respectively). The Noise-Power-Distance (NPD) data, standard-day profiles, performance coefficients and standard flight procedures included in the Data Base for the MD11 airplanes were obtained from the McDonnell Douglas Corporation. The Volpe Center extracted the NPD data for the F-16 airplanes from the United States Air Force's (USAF) data base which is part of their NOISEMAP suite of computer programs. NOISEMAP, the military counterpart of the INM, is used for predicting noise exposure around airports dominated by military operations. The USAF data were normalized to an airspeed of 160 knots and adjusted for the effect of duration consistent with the procedures for developing the INM data base. The standard-day profiles, which are the same for the four F-16 airplanes, were also extracted from the USAF's data base. They are considered typical for transient F-16 airplanes. However, due to significantly varying takeoff procedures for F-16 airplanes throughout the world a user-defined takeoff profile may be more appropriate. | TABLE A-1: INM VERSION 4.11 DATA BASE AIRPLANE DEFINITION | |---| |---| | | Airplane Category | | Category Noise Apprh | | | | Takeoff Profiles by Trip Length (nm) | | | | | | | |-----|-------------------|-------------------|----------------------|----|--------|-----|--------------------------------------|--------------|---------------|---------------|---------------|---------------|--------------| | | Name | Description | Name | • | Name | * | 0-
500 | 500-
1000 | 1000-
1500 | 1500-
2500 | 2500-
3500 | 3500-
4500 | over
4500 | | 102 | MD11GE | MD-11/CF6-80C2D1F | JCOM | 68 | 2CF68D | 102 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | | 103 | MT .1PM | MD-11/PW 4460 | JCOM | 69 | PW4460 | 103 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | | 104 | P16A | F-16A/PW-200 | JMIL | 70 | PM200 | 104 | 388 | 0 | 0 | 0 | , , | 0 | 0 | | 105 | F16GE | F-16C/D/GB-100 | JMIL | 71 | GB100 | 105 | 369 | 0 | 0 | 0 | 0 | 0 | 0 | | 106 | P16PW0 | F-16C/D/PW-220 | JMIL | 72 | PW220 | 106 | 390 | 0 | 0 | 0 | 0 | 0 | 0 | | 107 | P16PW9 | P-16C/D/PH-229 | JMIL | 73 | PW229 | 107 | 391 | 0 | 0 | 0 | 0 | 0 | 0 | ## A.5 References - Horonjeff, R.D., <u>Analysis of Aircraft Noise Levels in the Vicinity of Start-of-Takeoff Roll at Baltimore-Washington International Airport</u>, Report No. FAA-EE-92-01, Lexington, MA: Harris Miller Miller & Hanson Inc., May 1992. - Brown-Buntin Associates, "Letter Report, Noise Contour Adjustments McCarran International Airport, Las Vegas Unpublished Data", August 1993. #### APPENDIX B ## TAKEOFF
PROFILE GENERATOR This Appendix presents a technical discussion of the takeoff profile generator within INM Version 4.11. The discussion, based on the algorithms of SAE/AIR 1845 and the aerodynamic coefficients and standard flight procedures in Data Base Number 11, is presented in two sections. The first section describes the computation of individual takeoff profile segments under standard conditions, i.e., airport temperature of 59°F and airport elevation of zero ft Above Mean Sea Level (MSL). The second section describes the computation of individual takeoff profile segments under non-standard conditions. The horizontal distance and altitude increments computed for each acceleration segment at standard conditions are utilized for segment computations at non-standard conditions. In fact, the altitude Above Ground Level (AGL) at the end point of each segment is the same for the non-standard and standard profiles. However, for the non-standard case, the ground roll length of the takeoff segment and the flight angles of the airborne segments are modified in response to the user-defined airport conditions using the equations described below. The non-standard computations are achieved by: (1) an introduction of a specially developed routine for computation of atmospheric coefficients at a given altitude MSL as a function of the airport temperature and elevation; and (2) development of a routine for the automated adjustment of the rateof-climb for acceleration segments due to atmospheric conditions. With the atmospheric coefficients and the rates-of-climb controlled by the user-defined airport elevation and temperature, the SAE equations remain intact. The takeoff profile generator has been tested for non-standard temperatures from -10 to 100°F and airport elevations up to 6000 ft MSL. Accordingly, the third section of this Appendix presents a set of tables which summarize the runway requirements and operational boundaries of the takeoff profile generator for various combinations of airport elevation and temperature (Tables B-1 through B-9). ## B.1 Standard Conditions (15°C, Zero ft MSL) This section describes the computation of a standard-condition takeoff profile on a segment-by-segment basis. The Subscripts 1 and 2 refer to the beginning and end of the segment, respectively. The following definitions, constants, and ratios apply to all computations described herein: Gravitational Constant: g = 32.17 Thermal Gas Constant: $R_c = 1716.2$ Temperature Lapse Rate: $L \approx 0.003566$ °F/ft or °R/ft Standard Temperature, °F: $T_{fap} = T_{f0} = 59.0$ Standard Temperature, °C: $T_{cap} = T_{c0} = 15.0$ Standard Temperature, $^{\circ}R$: $T_{rap} = T_{r0} = 518.67$ Temperature Ratio: THETA = $1-[(L)(H_x)/T_{ro}]$, where H_x is the altitude MSL for segment point X Pressure Ratio: DELTA = THETA^[g/((Rc) (L))] Density Ratio: SIGMA = THETA(g/(Rc)(L))-1 Airport Elevation MSL: $H_{ap} = 0.0 \text{ ft}$ Brake Release Gross Weight = W Number of Engines supplying Thrust = N ## GROUND ROLL SEGMENT For the ground roll segment the following apply: Airport Temperature: $T_{c1} = T_{c2} = T_{cap}$ Pressure Altitude MSL: $H_1 = H_2 = H_{ap}$ Initial Calibrated Airspeed: $V_{c1} = 16.0 \text{ kts}$ Given the above, the remaining parameters for the ground roll segment are computed as follows: Initial Thrust: $Th_1 = E + F(V_{e1}) + G_1(H_1) + G_2(H_1)^2 + H(T_{e1})$ Final Calibrated Airspeed: $V_{c2} = (C)(W)^{\frac{1}{2}}$ Final Airplane True Speed: $V_{t2} = V_{c2}/(SIGMA)^{x}$ Final Thrust: $Th_2 = E + F(V_{c2}) + G_1(H_2) + G_2(H_2)^2 + H(T_{c2})$ Segment Horizontal Length: $S_g = [(B) (THETA) (W/DELTA)^2]/[(N) Th_2]$ where E, F, G₁, G₂, and H are engine-dependent coefficients from Data Base Number 11 for maximum takeoff thrust mode; C is a coefficient from Data Base Number 11 which is appropriate to the takeoff flap/slat setting; B is a coefficient from Data Base Number 11 which is appropriate to a specific airplane/flap-deflection combination, and varies only with the takeoff flap/slat setting; and SIGMA, THETA, and DELTA, defined above, are constants equal to 1 at sea level. ## CLIMB SEGMENT For climb segments the following apply: Initial Calibrated Airspeed: $V_{c1} = V_{c2}$ of the previous segment Final Calibrated Airspeed: $V_{c2} = V_{c1}$ Initial Thrust: $Th_1 = Th_2$ of the previous segment Initial Temperature: $T_{c1} = T_{c2}$ of the previous segment Initial Pressure Altitude MSL: $H_1 = H_2$ of the previous segment Final Segment Altitude AGL: Altend = As specified in the standard flight proced: e Given the above, the remaining parameters for the climb segment are computed as follows: Final Segment Altitude MSL: H₂ = Alt_{end} + H_{ap} Average Segment Altitude: $H_{avg} = 0.5(H_1 + H_2)$ Final Segment Temperature: $T_{c2} = [(T_{fap} - L(H_2)) - 32](5/9)$ Average Segment Temperature: $T_{cavg} = [(T_{tap} - L(H_{avg})) - 32](5/9)$ Average Calibrated Airspeed: $V_{cavg} = V_{c1} = V_{c2}$ Average Segment Thrust: $Th_{avg} = E + F(V_{cavg}) + G_1(H_{avg}) + G_2(H_{avg})^2 + H(T_{cavg})$ Average Airplane Weight: $W_{avg} = W/\{[THETA]^{(g/((Rc)(L)))}\}$ Sine of the Flight Angle: $SIN_{acq} = k\{[(N)(Th_{avg}/W_{avg})] - R\}$ where k = 1.01 for $V_{cavg} \le 200$; and $= 0.95 \text{ for } V_{cavg} > 200$ Cosine of the Flight Angle: $COS_{ang} = (1 - SIN_{ang}^2)^{\frac{1}{4}}$ Horizontal Segment Distance: $S_g = (H_2 - H_1)/(SIN_{ang}/COS_{ang})$ Final Segment Thrust: Th, = E + F(V_{c2}) + G₁(H_2) + G₂(H_3)² + H(T_{c2}) Final True Speed: $V_{t2} = V_{c2}/(SIGMA)^{\kappa}$ where E, F, G₁, G₂, and H are engine-dependent coefficients from Data Base Number 11 for the thrust mode defined in the standard takeoff procedure; and R is a coefficient from Data Base Number 11 which is the nondimensional ratio of the airplane's drag coefficient to lift coefficient for a given flap setting and airplane configuration. The landing gear is assumed to be retracted. # ACCELERATION SEGMENT For acceleration segments the following apply: | Initial Calibrated
Airspeed: | v_{e_1} | = | V _{c2} of the previous segment | |-----------------------------------|-----------------|---|---| | Initial Airplane
True Speed: | V_{t1} | • | V _{t2} of the previous segment | | Initial Thrust: | \mathtt{Th}_1 | * | Th, of the previous segment | | Initial Temperature: | Ţ _{c1} | = | T_{c2} of the previous segment | | Initial Pressure
Altitude MSL: | H ₁ | • | H ₂ of the previous segment | | Final Calibrated Airspeed: | Ve2 | = | As specified in the standard flight procedure | | Rate-of-Climb: | V_{tx} | • | As specified in the standard flight procedure | Given the above, computation of the remaining parameters is performed using an iterative procedure to arrive at the altitude increment, DelH. If the difference between DelH and DelH_c (the computed altitude increment for the current iteration) is greater than one ft, DelH is set equal to DelH_c, and the iterative process is repeated until a difference of one ft or less is achieved. | Initial Assumed | | | |---------------------|--------|--------| | Altitude Increment: | DelH = | 250 ft | # Start of Iterative Loop: | Start of Iterativ | ve Loop | <u>)</u> : | | |--------------------------------|-------------------|------------|---| | Final Segment
Altitude MSL: | H ₂ | # | H ₁ + DelH | | Final Segment Temperature: | T _{c2} | = | ${[T_{fap} - L(H_2)] - 32}(5/9)$ | | Final True
Speed: | V_{t2} | = | V _{c2} /(SIGMA) [%] | | Final Segment
Thrust: | Th ₂ | = | $E + F(V_{c2}) + G_1(H_2) + G_2(H_2)^2 + H(T_{c2})$ | | Average Segment Thrust: | Th _{avg} | = | 0.5(Th ₁ + Th ₂) | | Average. True Speed: | V _{tavy} | | 0.5 (V _{t1} + V _{t2}) | Average Segment Altitude: $H_{avg} = H_1 + 0.5DelH$ Average Airplane Weight: $W_{avg} = W/\{[THETA]^{[g/(Rc)(L))}\}$ Sine of the Flight Angle: $SIN_{ang} = V_{tz}/(101.2686V_{tavg})$ Flight Angle: GAMMA = arcsin(SIN_{ang}) Horizontal Segment $0.042062 (V_{t2}^2 - V_{t1}^2)$ Distance: $S_g = \frac{1}{[(N)(Th_{avg})/W_{avg}] - R_{avg} - SIN_{apg}}$ Computed Altitude Increment: $DelH_c = S_g[tan(GAMMA)](1/0.95)$ Deviation of the Computed Altitude Increment from the Altitude Increment Assumed at the Start of the Current Iteration Cycle DEV = abs[DelH_c - DelH] At this point the status of the iterative process is checked. If DEV is less than 1 ft, then the iterative process is complete. Otherwise, Altitude Increment: DelH = DelH_c and the iterative process is repeated as above. where E, F, G_1 , G_2 , and H are engine-dependent coefficients from Data Base Number 11 for the thrust mode defined in the standard takeoff procedure; and $R_{\rm avg}$ is a coefficient from Data Base Number 11 which is the non-dimensional ratio of the airplane's drag coefficient to lift coefficient for a given flap setting and airplane configuration. The landing gear is assumed to be retracted. ## THRUST REDUCTION SEGMENT A thrust reduction segment of 1000 ft (horizontal distance) is introduced to allow for a smooth transition of the thrust associated with the Federal Aviation Regulations, Part 36 thrust cutback point. This segment replaces the first 1000 ft of horizontal distance of the next segment which may be either a climb or an acceleration segment. Computation of the parameters associated with the thrust reduction segment and the next segment is performed simultaneously. For the thrust reduction segment the following apply: Initial Calibrated Airspeed: $V_{c1} = V_{c2}$ of the previous segment Initial Pressure Altitude MSL: $H_1 = H_2$ of the previous segment Initial Temperature: $T_{c1} = T_{c2}$ of the previous segment Initial Thrust: $Th_{ri} = Th_{i}$ of the previous segment Initial Airplane True Speed: $V_{t1} = V_{t2}$ of the previous segment Horizontal Distance of the Thrust Reduction Segment: $S_r = 1000 \text{ ft}$ Given the above, the final
thrust for the cutback segment is computed as follows: Thrust: $Th_{r2} = E + F(V_{c1}) + G_1(A_1) + G_2(H_1)^2 + H(T_{c1})$ where E, F, G1, G2, and H are engine-dependent coefficients from Data Base Number 11 for the thrust mode defined in the standard takeoff procedure. ## Thrust Reduction Followed by an Acceleration Segment: When the thrust reduction segment is followed by an acceleration segment, the initial thrust of the acceleration segment is set equal to Th_{r2} and computation of the remaining parameters associated with the acceleration segment is performed as described previously. The remaining parameters of the thrust reduction segment are computed as follows and the thrust reduction segment replaces the first 1000 ft of the acceleration segment: True Speed at the end of the thrust reduction segment: $V_{tr2} = V_{t1} + (V_{t2} - V_{t1}) (1000/S_g)$ Segment Altitude MSL at the end of the thrust reduction segment: $H_{r2} = H_1 + DelH(1000/S_g)$ where V_{t2} , S_{g} , and DelH are parameters computed above for an acceleration segment. ## Thrust Reduction Followed by a Climb Segment: When the thrust reduction segment is followed by a climb segment, the initial thrust of the climb segment is set equal to Th_{r2} and computation of the remaining parameters associated with the climb segment is performed as described previously. The remaining parameters for the thrust reduction segment are computed as follows and the thrust reduction segment replaces the first 1000 ft of the climb segment: True Speed at the end of the thrust reduction $segment: V_{tr} = V_{t1} = V_{t2}$ Segment Altitude MSL at the end of the thrust reduction segment: $H_r = H_1 + (H_2 - H_1) (1000/S_q)$ where V_{t2} , H_2 and S_q are parameters computed above for a climb segment. #### EXCEPTIONS The above computations assume the airplane is jet-powered and that the required thrust computations are performed in lbs-thrust. However, if the airplane is propeller-powered the following parameters are factored into the above computations: (1) propeller efficiency and installed net propulsive power for maximum takeoff thrust; and (2) propeller efficiency and installed net propulsive power for maximum climb thrust. In addition, for a select few airplanes, the thrust for a particular segment is given in the standard flight procedure as fixed and as such is not computed by the takeoff profile generator. Finally, for airplanes in Data Base Number 11 for which thrust is expressed in percent-RPM, an intermediate computation is performed to convert to lbs-thrust. ## B.2 Non-Standard Conditions This section describes the computation of a non-standard-condition takeoff profile on a segment-by-segment basis. Non-standard conditions exist when either the airport elevation is not zero ft MSL and/or the airport temperature is not standard at the airport elevation. The following definitions, constants, and ratios, based upon the concept of density altitude, supplement those described for standard conditions and apply to all computations described herein: | Gravitational Constant: | g | = | 32.17 | |---|-----------------------|---|--| | Thermal Gas Constant: | R_c | = | 1716.2 | | Temperature Lapse Rate: | L | = | 0.003566 °F/ft or °R/ft | | Airport Elevation MSL: | H_{ap} | = | User-defined in ft | | Non-Standard Temperature at Airport Elevation: | $T_{\rm fap}$ | = | User-defined degrees F | | Standard Temperature, °R: | Tro | = | 518.67 | | Standard Temperature Lapsed to Airport Elevation, °R: | T_{rap} | = | Tro - (L) (H _{ap}) | | Temperature at Altitude, °R: | Tr | = | T_{rap} - [(L)(H_x - H_{ap})]; where H_x is the altitude MSL for segment point X | | Standard Air Pressure: | $\mathbf{P_0}$ | = | 2116 | | Standard Air Pressure at Altitude: | P | = | (P ₀) (DELTA) | | Standard Air Density: | R_0 | = | 0.002328 | | Air Density at Altitude: | R | = | P/[(R _c)(T _r)] | | Non-Standard Density Ratio: | SIGMA _{ns} = | | R/R _o | Non-Standard SIGMA___(1/(g/((Rc)(L)-1))) Temperature Ratio: THETA_{na}= Non-Standard THETA_= {g/[(Rc)(L)]} Pressure Ratio: DELTA_= ## GROUND ROLL SEGMENT For the ground roll segment the following apply: Airport Temperature: Tc1 $T_{c2} = (T_{fap} - 32)(5/9)$ Pressure Altitude MSL: H, H₂ = Hap Initial Calibrated V_{c1} = 16.0 kts Airspeed: Given the above, the remaining parameters for the ground roll segment under non-standard conditions are computed as in Section B.1, Standard Conditions, using the non-standard THETA, SIGMA, and DELTA, as appropriate. #### CLIMB SEGMENT The parameters for the climb segment under non-standard conditions are computed as in Section B.1, Standard Conditions, using the nonstandard THETA, SIGMA, and DELTA, as appropriate. #### ACCELERATION SEGMENT With the exception of the iterative process described below, the parameters for the acceleration segment under non-standard conditions are computed as in Section B.1, Standard Conditions, using the non-standard THETA, SIGMA, and DELTA, as appropriate. Computation of the remaining parameters is performed using an iterative procedure to arrive at the horizontal distance of the segment, S_{gns} . If the difference between S_{gns} and S_{qc} (the computed horizontal distance for the current iteration) is greater than ten ft, S_{gns} is set equal to the arithmetic average of S_{gns} and S_{gc} , and the iterative process is repeated until a difference of ten ft or less is achieved. Initial Assumed S_{gns} Horizontal Distance: S, computed for standard conditions The equations for the acceleration segment under standard conditions are used to supplement the following non-standard computations: #### Start of Iterative Loop: Tangent of the Flight Angle: $TAN_{ang} = 0.95 (DelH/S_{gns})$ Sine of the Flight Angle: SIN_{ang}= sin[arctan(TAN_{ang})] Computed Horizontal Distance: $$= \frac{(\frac{1}{2}g) (0.95) (V_{t2}^2 - V_{t1}^2)}{[N (Th_{avg})] - R_{avg} - SIN_{ang}}$$ Deviation of the Computed Horizontal Distance from the Horizontal Distance Assumed at the Start of the Current Iteration Cycle: DEV = abs[S_{ec} - S_{gns}] At this point the status of the iterative process is checked. If DEV is less than ten ft, then the iterative process is complete. Otherwise, Horizontal Distance: $$S_{gns} = 0.5[S_{gc} + S_{gns}]$$ and the iterative process is repeated as above. where E, F, G_1 , G_2 , and H are engine-dependent coefficients from Data Base Number 11 for the thrust mode defined in the standard takeoff procedure; and $R_{\rm avg}$ is a coefficient from Data Base Number 11 which is the non-dimensional ratio of the airplane's drag coefficient to lift coefficient for a given flap setting and airplane configuration. The landing gear is assumed to be retracted. #### THRUST REDUCTION SEGMENT The parameters for the thrust reduction segment under non-standard conditions are computed as in Section B.1, Standard Conditions, using the non-standard THETA, SIGMA, and DELTA, as appropriate. #### ERROR CHECKING The non-standard portion of the profile generator maintains several built-in error checks which guard against the computation of improper takeoff profiles. Computation of takeoff profiles is not performed if any of the following conditions are detected: - (1) the computed flight angle for a climb segment is zero or negative; - (2) the computed horizontal distance for an acceleration segment is zero or negative; - (3) the number of iterations required to compute the horizontal distance of an acceleration segment exceeds five hundred; and (4) the length of the computed ground roll segment exceeds the length of the runway by more than ten percent; if the computed segment exceeds the runway length by less than ten percent, the user is warned of the discrepancy as discussed in Section 2.1. #### EXCEPTIONS The exceptions noted in Section 2.1, Standard Conditions, also apply for non-standard conditions. ## B.3 Runway Requirements/Operational Boundaries Tables B-1 through B-9 present the length (ft) of the ground roll segment computed by the profile generator for all INM airplanes and stage weights. These tables are intended to give the user guidance on the operational boundaries and runway requirements of the profile generator for various airport temperatures, elevations, and runway lengths. These data are presented for nine combinations of airport elevation and temperature intended to cover the range of average yearly conditions at airports across the United States. Tables B-1 through B-3 present these data for 0 ft Above Mean Sea Level (MSL) elevation and three temperatures, 59°F, 40°F and 80°F, respectively. Tables B-4 through B-6 present these data for 3000 ft MSL elevation and three temperatures, 59°F, 40°F and 80°F, respectively. Tables B-7 through B-9 present these data for 6000 ft MSL elevation and three temperatures, 59°F, 40°F and 80°F, respectively. When the generator determines that a profile can not be computed, as discussed in Section B.2, Error Checking, a zero is inserted in the table, e.g., Table B-2, INM Airplane Number 71, Stage Weight 3. TABLE 8-1: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 0 FT MSL | <u> </u> | <u> </u> | | | STAGE WEIGHT | | | | |----------|----------|----------|-------------|--------------|--------------|-------------|-------| | 2304 S | 1 | 2 | 3 | • | 5 | 6 | 7 | | 1 | 4358 | 4732 | 5223 | 5942 | 7545 | 7768 | | | | 4624 | 5004 | 5400 | 6352 | 7630 | 9173 | 10579 | | | 3719 | 4057 | 4501 | 5067 | 6644 | 6871 | | | | 2616 | 2926 | 3240 | 3752 | 4503 | 5309 | 6699 | | 5 | 3846 | 4157 | 4481 | 5257 | 6297 | 7545 | 8679 | | | | 4671 | 5438 | 6551 | 8036 | 9433 | | | 7 | 4193 | 4429 | 5176 | 6263 | 7767 | 8547 | | | | 2721 | 3109 | 3523 | 4193 | 4671 | | | | , | 3279 |
3739 | 4160 | 4913 | 5992 | 7186 | 8040 | | | | 3128 | 3656 | 4424 | 5486 | 6037 | | | 10 | 2799 | 3034 | 3405 | 4006 | 4436 | | | | 11 | 2684 | 3338 | 3879 | 4666 | \$754 | 6709 | | | 12 | 3000 | 4054 | 4607 | 5400 | 6483 | 7189 | 8167 | | 13 | 3705 | <u> </u> | | 4956 | 5969 | 6660 | 7614 | | 14 | 2257 | 3684 | 4294 | | | | | | 15 | 2693 | 3335 | 3959 | 4913 | 5992 | 7186 | | | 16 | 3279 | 3739 | 4160 | | | 7180 | 4040 | | 17 | 370\$ | 4054 | 4607 | 3400 | 6413 | | 8167 | | 18 | 6967 | 6967 | 4943 | 8556
5828 | 9799
6813 | 9799 | | | 19 | 3997 | 4369 | 4943 | | | 7868 | | | 20 | 3371 | 3656 | 3954 | 4609 | \$534 | 6575 | 7799 | | 21 | 4669 | 5071 | 5463 | 6353 | 7614 | 9032 | 10657 | | 22 | 5052 | 5363 | 5900 | 6443 | 7610 | 8883 | | | 23 | 4611 | 4897 | 5343 | \$811 | 6741 | 7747 | 8869 | | 24 | 5964 | 6863 | 7821 | 8843 | | | | | 25 | 4513 | 5004 | 5522 | 6146 | | | | | 26 | 5460 | 6050 | 6913 | 8098 | 9476 | | | | 27 | 5979 | 6964 | 8029 | 9074 | | | | | 26 | 4513 | 5004 | 5522 | 6146 | | | ••• | | 29 | 5460 | 6050 | 6913 | \$098 | 9476 | | ••• | | 30 | 5263 | 6120 | 6965 | 7699 | | | | | 31 | 3352 | 3846 | 4285 | 5206 | 6369 | ļ | | | 32 | 3414 | 3703 | 4015 | 4587 | 5362 | 6268 | 6811 | | 33 | 3020 | 3274 | 3549 | 4062 | 4765 | 5576 | 5970 | | 34 | 3067 | 3467 | 3924 | 4411 | 5328 | 6299 | | | 35 | 3506 | 3981 | 4489 | 5506 | | | ••• | | 36 | 3167 | 3681 | 4135 | 5041 | | | | | 37 | 4221 | 4827 | 5609 | | | | ••• | | 38 | 3292 | 4035 | | | | | | | 39 | 3184 | 3746 | 4612 | | | | | | 40 | 3634 | 4416 | 5227 | | | *** | | | 41 | 2124 | 2638 | 3133 | | | | | | 42 | 3075 | 3310 | 3893 | 4618 | | <u> </u> | | | 43 | 3634 | 4416 | 5227 | | | | | | 44 | 2124 | 2638 | 3133 | | | | | | 45 | 3075 | 3310 | 3893 | 4618 | | | | | 46 | 3653 | 4186 | 4839 | • | | | | | 47 | 3303 | 3688 | 4096 | 4526 | ••• | | | | 48 | 3897 | 4708 | 5601 | | | | | | 49 | 3685 | 4155 | 4728 | 5991 | | | | | 50 | 4002 | 4548 | 5131 | 6493 | | | | | 51 | 2646 | 2846 | 3091 | 3573 | 4217 | | | | 52 | 2747 | 2960 | 3219 | 3692 | 4376 | 512) | | | \$3 | 2826 | | | | ••• | | ••• | | 54 | 2569 | | | | | | | | 55 | 3609 | | | | | | | TABLE B-1: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 0 FT MSL (CONTINUED) | | <u> </u> | | | STAGE WEIGHT | | | | | | | | | |-------------|----------|--|--|--|--------------|---------------|-------------|--|--|--|--|--| | IME # | 1 | 1 2 | 3 | T | 5 | • | 7 | | | | | | | 54 | 4136 | | | | | | | | | | | | | \$7 | 3130 | | | | | | | | | | | | | 50 | 3498 | | | | | | | | | | | | | 57 | 3725 | | | | | | | | | | | | | 60 | 2972 | | | | | | | | | | | | | 61 | 4945 | | | | | | | | | | | | | 62 | 3896 | | | | | | | | | | | | | 63 | 2697 | 1397 | 4586 | | | | | | | | | | | 64 | 1794 | | | | | | ••• | | | | | | | 63 | 1211 | | | | ••• | | | | | | | | | 66 | 3860 | 4921 | 5483 | † | | • | | | | | | | | 67 | 2639 | | | | | | | | | | | | | 60 | 2560 | | | | | | | | | | | | | 65 | 1239 | | | | | | | | | | | | | 70 | 3181 | 4261 | 5396 | | | | | | | | | | | 71 | 1520 | 1856 | 2234 | | ••• | | | | | | | | | 72 | 1792 | 2332 | | | | | ••• | | | | | | | 73 | 2082 | | | | | | | | | | | | | 74 | 632 | | | | | | | | | | | | | 75 | 738 | | | | | | | | | | | | | 76 | 1584 | | | | | | | | | | | | | | 699 | | | | | | | | | | | | | 78 | 10532 | | | | | | | | | | | | | 79 | 4153 | 6477 | | | | | | | | | | | | 80 | \$158 | 7065 | | | | | | | | | | | | 61 | 4505 | 6732 | | | | | | | | | | | | 62 | \$120 | 7651 | | | | | | | | | | | | #3 | 3768 | 4193 | 4551 | 5313 | 6355 | 7861 | 9137 | | | | | | | 64 | 4084 | 4421 | 4756 | 5590 | 6711 | 8052 | 9291 | | | | | | | 85 | 3657 | 4252 | 4730 | 5769 | | | | | | | | | | 86 | 3569 | 4125 | 4636 | 5657 | | ••• | | | | | | | | 87 | 2753 | 2985 | 3237 | 3700 | 4351 | 5096 | 5457 | | | | | | | 44 | 2942 | 3608 | 4350 | | | | | | | | | | | 89 | 3324 | 4085 | 4821 | | | | | | | | | | | 90 | 3187 | 3894 | 4678 | | | | | | | | | | | 91 | 11242 | | | | | | | | | | | | | 92 | 9308 | | | | | | | | | | | | | 93 | 3244 | 3596 | 4111 | 4820 | 5645 | | | | | | | | | 94 | 3004 | 3331 | 3676 | 4092 | | | | | | | | | | 95 | 3062 | | | | | | | | | | | | | 36 | 4190 | | | | | | | | | | | | | 97 | 3640 | 4331 | 5158 | 5984 | | | | | | | | | | 98 | 4136 | | | 3700 | | | | | | | | | | ** | 2427 | | | | | \ | | | | | | | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | | | | | | 100 | 5460 | 6050 | 6913 | 8098 | 9476 | | | | | | | | | 102 | 3968 | 4287 | 4619 | 5445 | 6343 | 7459 | 8831 | | | | | | | | | 4543 | | | | | | | | | | | | 103 | 4202 | 4543 | 4899 | 5784 | 6749 | 7950 | 9430 | | | | | | | 104 | 3000 | | } | | | | | | | | | | | 105 | 3000 | | | | | | | | | | | | | | 3000 | | | 1 | | | | | | | | | | 107 | 3000 | | | | | | | | | | | | TABLE 8-2: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F, ELEVATION 0 FT MSL | 5 7545 7020 6112 4142 5793 8098 7767 4671 5512 5486 4081 5294 5964 5510 5512 5964 9015 6268 5091 7005 | 6
7788
8439
6322
4884
6942
9433
8547

6611
6037

6172
6606
6127

6411
6606
9015
7239 | 7 9733 6163 7984 7984 7984 7984 7984 7534 7634 7534 7005 7434 7534 . | |--|---|--| | 7545 7020 6112 4142 5793 8098 7767 4671 5512 5486 4081 5294 5964 5510 5512 5964 9015 6268 | 7788 8439 6322 4884 6942 9433 8547 6611 6037 6172 6606 6127 6611 6606 9015 7239 | 7514
7514 | | 7020 6112 4142 5793 8098 7767 4671 5512 5486 4081 5294 5964 5510 5512 5964 9015 6268 | 8439 6322 4884 6942 9433 8547 6611 6037 6172 6606 6127 6611 6606 9015 7239 | 9733 6163 7986 7436 7514 7005 7434 7514 | | 6112
6142
5793
8098
7767
4671
5512
5486
4081
5294
5964
5510

5512
5964
9015
6268 | 6322
4884
6942
9433
8547

6611
6037

6172
6606
6127

6611
6606
9015
7239 | 7984 7984 7434 7534 7005 7434 7514 | | 4142
5793
8098
7767
4671
5512
5486
4081
5294
5964
5510

5512
5964
9015
6268
5091 | 4884
6942
9433
8547

6611
6037

6172
6606
6127

6611
6606
9015
7239 | 7984 7984 7434 7434 7514
7514 751 | | 5793 8098 7767 4671 5512 5486 4081 5294 5964 5510 5512 5964 9015 6268 | 6942 9433 8547 6611 6037 6172 6606 6127 6611 6606 9015 7239 | 7984 7434 7514 7005 7434 7514 | | 8098
7767
4671
5512
5486
4081
5294
5964
5510

5512
5964
9015
6268
5091 | \$433
\$547

6611
6037

6172
6606
6127

6611
6606
9015
7239 | 7434

7514
7005

7434
7514 | | 7767 4671 5512 5486 4081 5294 5964 5510 5512 5964 9015 6268 | 8547

6611
6037

6172
6606
6127

6611
6606
9015
7239 | 7434

7514
7005

7514
 | | 4671
5512
5486
4081
5294
5964
5510

5512
5964
9015
6268
5091 | 6611
6037

6172
6606
6127

6611
6606
9015 | 7434

7514
7005

7434
7514 | | 5512
5486
4081
5294
5964
5510

5512
5964
9015
6268
5091 | 6611
6037

6172
6606
6127

6611
6606
9015 | 7436

7514
7005

7434
7514 | | 5486
4081
5294
5964
5510

5512
5964
9015
6268
5091 | 6037

6172
6606
6127

6611
6606
9015
7239 | 7514
7005

7414
7514 | | 4081
5294
5964
5510

5512
5964
9015
6268
5091 | 6172
6606
6127

6611
6606
9015 | 7514
7005

7414
7514 | | 5294
5964
5510

5512
5964
9015
6268 | 6172
6606
6127

6611
6606
9015
7239 | 7514
7005

7414
7514 | | 5964
5510

5512
5964
9015
6268
5091 | 6606
6127

6611
6606
9015
7239 | 7514
7005

7414
7514 | | 5510

5512
5964
9015
6268
5091 | 6127

6611
6606
9015
7239 | 7005

7414
7514 | | 5512
5964
9015
6268 |
6611
6606
9015
7239 | 7634
7514 | | 5512
5964
9015
6268
5091 | 6611
6606
9015
7239 | 7434
7514 | | 5964
9015
6268
5091 | 6606
9015
7239 | 7514 | | 9015
6268
5091 | 9015
7239 | | | 6268
5091 | 7239 | | | 5091 | | | | | 6049 | | | 7005 | | 7175 | | | 8309 | 9804 | | 7001 | 6172 | | | 6202 | 7127 | 8159 | | | | *** | | | | | | 8718 | | | | | | | | | | | | 8718 | | | | | | | | 5860 | | ••• | | 4933 | 5767 | 6266 | | 4394 | 5130 | 5492 | | 4902 | 5795 | ••• | | ••• | | | | | | | | ļ | | | | | | | | | | | | ļ | | | | 5718 8718 8718 5960 4933 4384 4902 | ### ################################## | TABLE B-2: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F, ELEVATION 0 FT MSL (CONTINUED) | <u> </u> | STAGE WEIGHT | | | | | | | | | |----------|--------------|--|--|--|--------------|--------------|--|--|--| | 2304 6 | 1 | 2 | 3 | T . | 5 | 6 | 7 | | | | | | | | | | | | | | | 37 | 2880 | | | | | | | | | | 30 | 3210 | | | | | | | | | | 39 | 3427 | | | | | | | | | | 60 | 2734 | | | | | | | | | | 61 | 4550 | | | | | | | | | | 62 | 3586 | | | | | | | | | | 63 | 2435 | 3068 | 4141 | | ••• | | | | | | 66 | 1651 | | | | | | | | | | 65 | 1093 | | | | | | | | | | 66 | 3485 | 4443 | 5312 | | | | | | | | 67 | 2362 | | | | | | | | | | | 2311 | | | | | | | | | | - 66 | | | | | | | | | | | 70 | 2873 | 3794 | 4872 | | | | | | | | | 1372 | 1676 | 10/2 | | | | | | | | 72 | 1572 | 2106 | | | | | | | | | 72 | 1618 | 2106 | | | | | | | | | | | | | | | | | | | | 74 | 570 | | | | | | | | | | 75 | 667 | | | | | | | | | | 76 | 1431 | | | | | | | | | | 78 | 9689 | | | | | | | | | | | | | | | | | | | | | 79 | 3820 | 5954 | | | | | | | | | 80 | 4746 | 6500 | | | | | | | | | 81 | 4068 | 6079 | ••• | | | | | | | | 82 | 4624 | 3838 | 41.00 | 4888 | 5847 | 7232 | 8406 | | | | 63 | 3467 | 4967 | 4376 | 5143 | 6174 | 7408 | 8547 | | | | 84 | | 3912 | 4352 | 5307 | | | | | | | 05
06 | 3364 | 3795 | 4265 | 5204 | | | | | | | 87 | 2533 | 2746 | 2978 | 3411 | 4002 | 4688 | 5020 | | | | 89 | 2707 | 3326 | 4002 | | | | | | | | 89 | 3058 | 3758 | 4435 | | | | | | | | 90 | 2932 | 3583 | 4304 | | | | | | | | 91 | 10327 | | | | | | | | | | 92 | 8563 | | | | | | | | | | 93 | 2984 | 3308 | 3782 | 4434 | 5194 | | | | | | 94 | 2764 | 3065 | 3382 | 3764 | | | | | | | 95 | 2817 | | | | | | | | | | 96 | 3855 | | | | | | | | | | 97 | 3349 | 3985 | 4745 | 5505 | | | | | | | 98 | 3805 | | | | | | | | | | 99 | 2233 | | | | | | | | | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | | | 101 | 5460 | 6050 | 6913 | 8098 | 9476 | | | | | | 102 | 3369 | 3639 | 3920 | 4618 | 5378 | 6321 | 7479 | | | | 103 | 3501 | 3784 | 4079 | 4812 | 5611 | 6605 | 7827 | | | | 104 | 3000 | | | | | | | | | | 105 | 3000 | | | | | | | | | | 106 | 3000 | | | | | | | | | | | <u> </u> | | | | | | | | | | 107 | 3000 | | | <u></u> | <u> </u> | <u> </u> | | | | TABLE B-3: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F , ELEVATION 0 FT MSL | | T | · | | STAGE WEIGHT | | | | |----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------| | E304 # | 1 | 2 | 3 | | 5 | 6 | 7 | | 1 | 4358 | 4732 | 5223 | 5842 | 7545 | 7788 | | | | 3053 | 3468 | 5901 | 6941 | 0330 | 10024 | 11561 | | | 4064 | 4433 | 4919 | 5537 | 7260 | 7509 | | | | 2058 | 3198 | 3541 | 4100 | 4920 | 5001 | 7321 | | | | | 4896 | 5745 | 6081 | 8245 | 9484 | | | 4202 | 4542 | | | | | | | | 4193 | 4671 | 5434 | 6263 | 7767 | 9433
8547 | | | | 3963 | 4429 | 5176 | | | | | | • | 2721 | 3109 | 3523 | 4193 | 4671 | *** | | | • | 3583 | 4086 | 4545 | 5369 | 6548 | 7852 | 8630 | | 10 | 2799 | 3128 | 3656 | 4424 | 5486 | 6037 | | | | 2933 | 3315 | 3721 | 4378 | 4847 | | *** | | 12 | 3278 | 3647 | 4239 | 5099 | 6288 | 7332 | | | 13 | 4049 | 4430 | 5034 | 5901 | 7084 | 7846 | 8925 | | 14 | 3668 | 4025 | 4594 | 5415 | 6544 | 7277 | 8350 | | 15 | 2943 | 3644 | 4326 | | | ••• | | | 16 | 3583 | 4086 | 4545 | 5369 | 6548 | 7852 | 8830 | | 17 | 4049 | 4430 | 5034 | 5901 | 7084 | 7846 | #925 | | 18 | 7614 | 7614 | 9350 | 9350 | 10708 | 19708 | ••• | | 19 | 4368 | 4797 | 5401 | 6380 | 7445 | 8598 | | | 20 | 3683 | 3995 | 4321 | 5037 | 6047 | 7185 | 8523 | | 21 | 5102 | 5542 | 5970 | 6942 | 8321 | 9870 | 11546 | | 22 | 5521 | 5882 | 6447 | 7041 | 8 315 | 9707 | ••• | | 23 | \$039 | \$351 | 5839 | 6350 | 7366 | 8465 | 9692 | | 24 | 5968 | 6463 | 7821 | 8841 | | **- | ••• | | 25 | 4932 | 5468 | 6034 | 6716 | | -1- | | | 26 | 5967 | 6612 | 7554 | 8849 | 19355 | | | | 27 | 6533 | 7610 | 8773 | 9915 | | | ••• | | 28 | 4932 | 5468 | 6034 | 6716 | | • | | | 29 | 5967 | 6612 | 7554 | 8849 | 10355 | | | | 30 | \$751 | 6688 | 7611 | 8413 | | | | | 31 | 3663 | 4203 | 4683 | 5689 | 6960 | *** | | | 32 | 3731 | 4047 | 4387 | 5012 | 3860 | 6850 | 7443 | | 33 | 3300 | 3578 | 3878 | 4439 | 5207 | 6094 | 6524 | | 34 | 3352 | 3788 | 4287 | 4820 | 5823 | 6883 | | | 35 | 3832 | 4351 | 4905 | 6016 | | ••• | | | 36 | 3488 | 4029 | 4526 | 5518 | | | | | 37 | 4613 | 5274 | 6129 | | | | | | 38 | 3598 | 4409 | | | | | ••• | | 39 | 3480 | 4093 | 5040 | | | | | | 40 | 3971 | 4825 | 5712 | | | | | | 41 | 2321 | 288) | 3424 | | | | | | 42 | 3361 | 3617 | 4254 | 5047 | | | | | 43 | 3971 | 4825 | 5712 | | | | | | | | | | <u> </u> | | | | | -44 | 2321 | 2883
3617 | 3424
4254 | 5047 | | | | | 45 | 3361 | | | | | <u> </u> | | | | 3992 | 4574 | 5288 | 1246 | | | | | 47 | 3609 | 4030 | 6476 | 4946 | ••• | | | | 48 | 4258 | 5145 | 6121 | | | | | | | 4027 | 4540 | 5166 | 6547 | | | | | 49 | 1 | 4970 | 5607 | 7095 | | | | | 50 | 4373 | | | | | | | | | 4373
2891 | 3111 | 3377 | 3904 | 4600 | | | | 50 | | | 3377
3519 | 3904
4036 | 4608
4783 | \$600 | | | 50 | 2891 | 3111 | | | | | | | 50
52
52 | 2891
3002 | 3111
3236 | 3519 | 4036 | 4783 | \$600 | | TABLE B-3: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F , ELEVATION 0 FT MSL (CONTINUED) | | | | | STAGE WEIGHT | | | | |---|---|--|--
--|--|-----------|----------------| | 2301 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 56 | 4136 | | | · · · · · · · · · · · · · · · · · · · | | | | | \$7 | 3421 | | | | | | | | 30 | 3#23 | | | | | | | | 59 | 4071 | | | | | | | | 60 | 3248 | | | | | | | | 61 | 5404 | | | | | | | | 62 | 4260 | | | | | ••• | | | 63 | 3006 | 3787 | 5111 | | | | | | 64 | 1961 | | | | | | | | 65 | 135 | | | | | | | | 66 | 4302 | 5485 | 6558 | | | | | | 67 | 2941 | | | | | | | | 68 | 2853 | | | | | | | | 69 | 1361 | | | | | | | | 70 | 3546 | 4683 | 6014 | | | | | | 71 | 1694 | 2069 | , | | | | | | 72 | 1997 | 2599 | | | | | | | 73 | 2321 | | | | | | | | | | | | | | | | | 74 | 704 | | | | ļ | | | | 75 | 823 | | | | | *** | ••• | | 76 | 1766 | | | | | ••• | | | 77 | 780 | | | | | *** | [| | 78 | 11509 | | | | | ••• | | | 79 | 4538 | 7077 | | | | | | | *0 | 5637 | 7720 | | | ••• | | ••• | | #1 | 5022 | 7504 | | | | | | | 82 | 5707 | 8528 | | | | | ļ | | 83 | 4118 | 4582 | 4973 | 5406 | 6945 | 8590 | 9984 | | ** | 4463 | 4031 | 5197 | 6109 | 7334 | 8799 | 10152 | | 85 | 3996 | 4646 | 5169 | 6304 | | | | | 96 | 3901 | 4508 | 3066 | 6182 | | ••• | ••• | | 87 | 3009 | 3262 | 3537 | 4052 | 4754 | 5569 | 5963 | | ** | 3215 | 3943 | 4754 | | | | | | 89 | 3633 | 4464 | 5268 | *** | ••• | | | | 90 | 3483 | 4255 | \$112 | | | | | | 91 | 12306 | | | | | | | | 92 | | | | ••• | | | | | 93 | 10171 | | | ••• | *** | ••• | | | | | | | | | | | | 94 | 10171 | ••• | | ••• | ••• | ••• | | | 94
95 | 10171
3544 | 3929 | 4493 | 5267 | 6169 | ••• | | | | 10171
3544
3283 | 3929
3640 | 4493
4017 | 5267
4472 | 6169 | ••• | | | 95 | 10171
3544
3283
3346 | 3929
3640 | 4493 | 5267
4472 | 6169 | | | | 95
96 | 10171
3544
3283
3346
4579 | 3929
3640 | 4493
4017 | 5267
4472 | 6169 | | | | 95
96
97 | 10171
3544
3203
3346
4579
3978 | 3929
3640

4733 | 4493
4017

5637 | 5267
4472

6539 | 6169
 | | | | 95
96
97
98 | 10171
3544
3283
3346
4579
3978
4520 | 3929
3640

4733 | 4493
4017

5637 | 5267
4472

6539 | | | | | 95
96
97
98
99 | 10171
3544
3203
3346
4579
3978
4520
2652 | 3929
3640

4733 | 4493
4017

5617 | 5267
4472

6539 | | | | | 95
96
97
98
99
100 | 10171
3544
3203
3346
4579
3978
4520
2652
4513 | 3929
3640

4733

5004 | 4493
4017

5637

5522 | 5267
4472

6539

6146 | | | | | 95
96
97
98
99
100 | 10171
3544
3203
3346
4579
3978
4520
2652
4513
5460 | 3929
3640

4733

5004
6050 | 4493
4017

5637

5522
6913 | 5267
4472

6539

6146 | 6169

9476 | | | | 95
96
97
98
99
100
101 | 10171
3544
3283
3346
4579
3978
4520
2652
4513
5460 | 3929
3640

4733

5004
6050 | 4493
4017

5637

5522
6913
5564 | 5267
4472

6539

6146
8098
6563 |
6169

9476
7651 | | 10667 | | 95
96
97
98
99
100
101
102
103 | 10171
3544
3283
3346
4579
3978
4520
2652
4513
5460
4777
5189 | 3929
3640

4733

5004
6050
5163 | 4493
4017

5637

5522
6911
5564
6055 | 5267
4472

6539

6146
8098
6563
7156 | 6169 9476 7651 8356 | | 10667
11708 | | 95
96
97
98
99
100
101
102
103
104 | 10171
3544
3283
3346
4579
3978
4520
2652
4513
5460
4777
5189 | 3929
3640

4733

5004
6050
5163 | 4493
4017

5637

5522
6913
5564
6055 | 5267
4472

6539

6146
8098
6563
7156 | 6169 9476 7651 8358 | 9004 9858 | 10667
11708 | TABLE B-4: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 3000 FT MSL | | | ·· <u>·</u> | | STAGE WEIGHT | | | | |--------|------|-------------|-------|--------------|-------|----------|-------| | 2300 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 1 | 4358 | 4732 | 5223 | 5842 | 7545 | 7788 | | | 2 | 5750 | 6322 | 6714 | 7895 | 9482 | 11396 | 13139 | | 3 | 4627 | 5946 | 5598 | 6301 | 6257 | 8540 | | | • | 3255 | 3641 | 4031 | 4667 | 5600 | 6691 | 8327 | | • | 4693 | 5069 | 5464 | 6409 | 7673 | 9191 | 10569 | | • | 4193 | 4671 | 5438 | 6551 | 8098 | 9433 | | | 7 | 3963 | 4429 | 5176 | 6263 | 7767 | 8547 | | | • | 2721 | 3109 | 3523 | 4193 | 4671 | | | | • | 4028 | 4592 | 5109 | 6032 | 7355 | 8818 | 9913 | | 10 | 2799 | 3128 | 3636 | 4424 | 5486 | 6037 | | | 11 | 3328 | 3761 | 4221 | 4965 | 5497 | | | | 12 | 3848 | 4281 | 4976 | 5985 | 7382 | 8607 | | | 13 | 4748 | 5195 | 5904 | 6921 | 6308 | 9202 | 10467 | | 16 | 4136 | 4537 | 5177 | 6101 | 7371 | 8195 | 9367 | | 15 | 3403 | 4213 | 0 | | | | | | 16 | 4028 | 4593 | 5109 | 6032 | 7355 | 8618 | 9913 | | 17 | 4748 | \$195 | 5904 | 4921 | 8308 | 9202 | 19467 | | 10 | 8684 | 8684 | 10661 | 10661 | 13208 | 12206 | | | 19 | 5160 | 3666 | 6381 | 7537 | 8797 | 10160 | | | 20 | 4130 | 4479 | 4844 | 5645 | 6775 | 8047 | 9543 | | 21 | 6001 | 6519 | 7022 | 8166 | 9788 | 11611 | 13700 | | 22 | 6263 | 6674 | 7315 | 7987 | 9429 | 11004 | | | 23 | 5744 | 6100 | 6635 | 7236 | 8393 | 9643 | 11038 | | 24 | 5964 | 6863 | 7821 | 0041 | | | | | 25 | 5823 | 6457 | 7125 | 7930 | | | | | 26 | 6755 | 7485 | 8551 | 10015 | 11716 | | ••• | | 27 | 7666 | 8929 | 10294 | 11634 | | | | | 28 | 5823 | 6457 | 7125 | 7930 | | | *** | | 29 | 6755 | 7485 | 8551 | 10015 | 11718 | | | | 30 | 6521 | 7582 | 8629 | 9537 | | | | | 31 | 4324 | 4961 | 5528 | 6716 | 8216 | | | | 32 | 4196 | 4550 | 4933 | 5634 | 6585 | 7695 | 8360 | | 33 | 3606 | 3909 | 4236 | 4848 | 5684 | 6649 | 7117 | | 34 | 3605 | 4072 | 4607 | 5177 | 6249 | 7383 | | | 35 | 4159 | 4721 | 5320 | 6520 | | ••• | *** | | 36 | 3926 | 4534 | 5092 | 6206 | | | ••• | | 37 | 5420 | 6207 | 7212 | | | *** | | | 38 | 4081 | 5000 | | | | | | | 39 | 3965 | 4663 | 5741 | | | | | | 40 | 4651 | 5651 | 6690 | | | | | | 41 | 2712 | 3360 | 4001 | | | | | | 42 | 3957 | 4259 | 5009 | 5943 | | | | | 43 | 4651 | 5651 | 6690 | | ••- | | ••• | | 44 | 2712 | 3368 | 4001 | | | ••• | ••• | | 45 | 3957 | 4259 | 5009 | 5943 | ••• | | | | 46 | 4674 | 5355 | 6191 | | | | | | 47 | 4094 | 4571 | 5076 | 5608 | | | | | 40 | 4795 | 5792 | 6889 | | | | | | 49 | 4548 | 5128 | 5834 | 7391 | | | | | \$0 | 5029 | 5715 | 6447 | 8157 | | | | | 51 | 3259 | 3506 | 3806 | 4399 | 5191 | | | | 52 | 3207 | 3541 | 3851 | 4414 | 5229 | 6119 | ••• | | 53 | 3377 | | | | ••• | | | | 54 | 32#1 | | | | | | | | | | | | · | | 4 | L | TABLE B-4: RUMMAY REQUIF MENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 3000 FT MSL (CONTINUED) | | STAGE WEIGHT | | | | | | | | | |--------|--------------|------|------|------|-------|------|-------|--|--| | 2304 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 56 | 4136 | | | | | | • | | | | 57 | 3647 | | | | | | | | | | 58 | 4240 | | | | | | | | | | 59 | 4790 | | | | | | | | | | 60 | 3458 | | | | ••• | | | | | | 61 | 5994 | | | | | | | | | | 62 | 4798 | | | | | | | | | | 63 | 3261 | 4100 | 5545 | | | | | | | | 64 | 2156 | | | | | | | | | | 65 | 1464 | | ••• | | | | ••• | | | | 66 | 4667 | 5951 | 7115 | | | | ••• | | | | 67 | 3191 | | | | | | | | | | 68 | 3095 | | | • | ••• | ••• | | | | | 69 | 1499 | | | | | | | | | | 70 | 3847 | 5081 | 6525 | | | | | | | | 71 | 1838 | 2245 | 0 | | | | | | | | 72 | 2167 | 2820 | | | *** | ••• | | | | | 73 | 2518 | | ••• | | | ••• | | | | | 74 | 764 | | | | | | | | | | 75 | 893 | | | | *** | | | | | | 76 | 1916 | | | ••• | | | | | | | 77 | 846 | | | | | | | | | | 78 | 13454 | | | | | | | | | | 79 | 5094 | 7944 | | | | | ••• | | | | 80 | 6)28 | 8663 | | | | | ••• | | | | 61 | 5448 | 6141 | | | | | | | | | 62 | 6192 | 9252 | *** | ••• | | | | | | | 83 | 4637 | 5160 | 5599 | 6535 | 7815 | 9662 | 11226 | | | | 84 | 5043 | 5459 | 5072 | 6900 | 8281 | 9932 | 11457 | | | | 85 | 4503 | 5235 | 5823 | 7099 | | | | | | | 86 | 4233 | 4890 | 5494 | 6690 | | ••• | | | | | 87 | 3464 | 3755 | 4071 | 4664 | 5471 | 6403 | 6861 | | | | 88 | 3717 | 0 | 0 | | | | | | | | 69 | 3949 | 4849 | 5718 | | | | | | | | 90 | 4009 | 4896 | 5881 | | | | | | | | 91 | 11820 | | | | | | | | | | 92 | 11445 | | | | | | | | | | 93 | 4029 | 4466 | 5106 | 5985 | 7008 | | ••• | | | | 94 | 3800 | 4214 | 4650 | 5176 | ,,,,, | | | | | | 95 | 3660 | | *** | | | | | | | | 96 | 5268 | | | | | | | | | | 97 | 4698 | 5591 | 6659 | 7725 | | | | | | | 98 | 5066 | 2221 | •••• | 1725 | | | | | | | | 3913 | ••• | | | | | | | | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | | | | | | 6913 | | | | | | | | 101 | 5460 | 6050 | | 8098 | 9476 | 4116 | | | | | 102 | 4968 | 5367 | 5783 | 6816 | 7939 | 9335 | 11051 | | | | 103 | 5183 | 5603 | 6041 | 7131 | 4316 | 9796 | 11616 | | | | 104 | 3000 | | | | | | | | | | 105 | 3000 | | ••• | | | | | | | | 106 | 3000 | | | | | ••• | | | | | 107 | 3000 | | ••• | | | | | | | TABLE B-5: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F , ELEVATION 3000 FT MSL | | I | · · · · · · · · · · · · · · · · · · · | | STAGE WEIGHT | | | | |--|--|--|--|--|-------------|-------|-------| | tiot e | 1 | 2 | 3 | | 5 | 6 | 7 | | 1 | 4358 | 4722 |
5223 | 5942 | 7545 | 7788 | | | | | 5724 | 6176 | 7263 | 9723 | 10484 | | | | 5290 | | | 5796 | 7597 | 7857 | 12088 | | | 4256
2995 | 4642
3350 | 5150
3709 | 4293 | 5152 | 6073 | 7661 | | _ | | | | 5096 | 7059 | | | | 5 | 4315 | 4664 | 5027 | } | | 8456 | 9723 | | | 4193 | 4671 | 5438 | 6551 | 8094 | 9433 | | | 7 | 3963 | 4429 | 5176 | 6263 | 7767 | 8547 | | | | 3721 | 3109 | 3523 | 4193 | 4671 | | | | | 3704 | 4226 | 4700 | 5550 | 6767 | 8112 | 9130 | | 10 | 2799 | 3138 | 3656 | 4424 | 5486 | 6037 | | | 11 | 3062 | 3460 | 3884 | 4568 | 5057 | | | | 12 | 3540 | 3939 | 4578 | 5506 | 6791 | 7918 | | | 13 | 4364 | 4780 | 5432 | 6367 | 7643 | 8466 | 9630 | | 14 | 3805 | 4174 | 4763 | 5613 | 6781 | 7539 | 8617 | | 15 | 3130 | 3875 | 0 | | | | *** | | 16 | 3704 | 4226 | 4700 | 5550 | 6767 | 8112 | 9120 | | 17 | 4364 | 4740 | 5432 | 6367 | 7643 | 8466 | 9430 | | 18 | 7989 | 7989 | 9808 | 9404 | 11231 | 11231 | ••• | | 19 | 4747 | 5213 | \$870 | 6934 | 8093 | 9347 | | | 20 | 3799 | 4121 | 4456 | 5193 | 6233 | 7403 | 8779 | | 21 | 5521 | 5997 | 6460 | 7513 | 9005 | 10682 | 12604 | | 22 | 5764 | 6140 | 6729 | 7348 | 8675 | 10124 | ••• | | 23 | 5284 | 5611 | 6122 | 6657 | 7721 | 8871 | 10154 | | 24 | 5969 | 6863 | 7821 | 8841 | ••• | • | | | 25 | 5357 | 5940 | 6554 | 7295 | ••- | | *** | | 26 | 6215 | 6886 | 7867 | 9214 | 19780 | ••• | ••• | | 27 | 7052 | 8215 | 9470 | 10703 | | ••• | *** | | 28 | 5357 | 5940 | 6554 | 7295 | | ••• | ••• | | 29 | 6215 | 6886 | 7867 | 9214 | 10780 | | ••• | | 30 | 5999 | 6976 | 7938 | 8774 | | | *** | | 31 | 3978 | 4564 | 5086 | 6179 | 7560 | | ••• | | 32 | 3860 | 4186 | 4538 | \$283 | 6058 | 7079 | 7691 | | 33 | 3317 | 3596 | 3897 | 4460 | 5229 | 6117 | 6547 | | 34 | 3316 | 3746 | 4238 | 4763 | 5749 | 6792 | | | 15 | 3826 | 4343 | 4895 | 5998 | | | | | 36 | 3607 | 4165 | 4678 | 5701 | | | | | 37 | 4994 | 5710 | 6635 | | | | *** | | 38 | 3754 | 4600 | | ••• | | | | | 39 | 3648 | 4290 | 5262 | | | | | | 40 | 4279 | 5199 | 6155 | *** | | | | | 41 | 2495 | 3099 | 3681 | | | | | | | | | | | | | | | 42 | 3640 | 3918 | 4608 | 5467 | | | | | 42 | | <u> </u> | | 5467 | | | | | 43 | 4279
2495 | 3918
5199
3099 | 4608
6155
3681 | | | | | | 43 | 4279
2495 | 5199
3099 | 6155
3681 | | | | | | 43 | 4279
2495
3640 | 5199
3099
3918 | 6155
3681
4608 | 5467 | | | | | 43
44
45
46 | 4279
2495
3640
4300 | 3099
3099
3918
4927 | 6155
3681
4608
5696 | 5467 | | ••• | | | 43
44
45
46
47 | 4279
2495
3640
4300
3766 | 5199
3099
3918
4927
4206 | 6155
3681
4608
5696
4670 | \$467

\$160 | | | | | 43
44
45
46
47
48 | 4279
2495
2640
4300
3766
4411 | 5199
3099
3918
4927
4206
5329 | 6155
3681
4608
5696
4670
6337 | \$467

\$160 | | | | | 43
44
45
46
47
48
49 | 4279 2495 3640 4300 3766 4411 4184 | 5199
3099
3918
4927
4206
5329 | 6155
3681
4608
5696
4670
6337
5367 | 5467

5160

6799 | | | | | 43
44
45
46
47
48
49
50 | 4279 2495 1640 4300 3766 4411 4184 4626 | 5199
3099
3918
4927
4206
5129
4717
5257 | 6155
1681
4608
5696
4670
6337
5367
5931 | 5467

5160

6799
7505 | | | | | 43
44
45
46
47
48
49
50 | 4279 2495 1640 4300 3766 4411 4184 4626 2998 | 5199
3099
3918
4927
4206
5329
4717
5257
3225 | 6155
3681
4608
5696
4670
6337
5367
5931
3502 | 5467

5160

6799
7505
4047 | 4775 | | | | 43
44
45
46
47
48
49
50
51 | 4279 2495 3640 4300 3766 4411 4184 4626 2998 3023 | 5199 3099 3918 4927 4206 5329 4717 5257 3225 | 6155
3681
4608
5696
4670
6337
5367
5931
3502
3542 | 5467

5160

6799
7505
4047
4060 | 4775 4809 | | | | 43
44
45
46
47
48
49
50
51
52
53 | 4279 2495 2490 2490 3400 4300 3766 4411 4184 4626 2998 3023 3107 | 5199 3099 3918 4927 4206 5129 4717 5257 3225 | 6155 3681 4608 5696 4670 6337 5367 5931 3502 | 5467

5160

6799
7505
4047
4060 | 4775 4809 | | | | 43
44
45
46
47
48
49
50
51 | 4279 2495 3640 4300 3766 4411 4184 4626 2998 3023 | 5199 3099 3918 4927 4206 5329 4717 5257 3225 | 6155
3681
4608
5696
4670
6337
5367
5931
3502
3542 | 5467

5160

6799
7505
4047
4060 | 4775 4809 | | | TABLE 8-5: RUMWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F , ELEVATION 3000 FT MSL (CONTINUED) | | | | | STAGE WEIGHT | | | | |--------|--------------|------|--------------|--------------|--------------|------|-------| | 2300 6 | 1 | 2 | , | • | \$ | 6 | 7 | | * | 4136 | | | | | ••• | • | | \$7 | 3355 | | | | | ••• | | | 54 | 3901 | | | | | | | | 59 | 4407 | | | | | | | | 60 | 3101 | ••• | | | | | | | 61 | 5514 | | | <u> </u> | | | | | 62 | 4414 | | | | | | | | 63 | 2945 | 3710 | 5007 | | | | | | - 64 | 1983 | | | | ••• | ••• | | | | | | | | | | | | -65 | 1322 | | ļ <u> </u> | | | | | | | 4214 | 5373 | 6424 | | | | | | 67 | 2881 | ••• | | ••• | | | | | | 2795 | | | | • | | | | 69 | 1353 | | | *** | ••• | ••• | *** | | 70 | 3474 | 4588 | 5892 | | | ••• | | | 71 | 1660 | 2027 | • | | ••• | | | | 72 | 1957 | 2546 | | ••• | | ••• | ••• | | 73 | 2274 | | | | | | *** | | 74 | 690 | ••• | | ••• | ••• | | ••• | | 75 | 00€ | | | | | | ••• | | 76 | 1730 | | | | | ••• | ••• | | 77 | 764 | | | | | | ••• | | 78 | 12377 | | ••• | | | | ••• | | 79 | 4686 | 7308 | | | ••• | | | | 80 | 5822 | 7972 | | | | ••• | ••• | | 81 | 4920 | 7351 | | | | | | | 82 | 5591 | 8354 | | | | | | | 83 | 4266 | 4747 | 5151 | 6012 | 7189 | 8885 | 10329 | | 84 | 4639 | 5022 | 5402 | 6348 | 7618 | 9137 | 10540 | | 45 | 4143 | 4816 | 5357 | 6531 | | | | | 86 | 3695 | 4499 | 5054 | 6162 | | ••• | *** | | 87 | 3186 | 3455 | 3745 | 4290 | 5033 | 5895 | 6312 | | 11 | 3420 | 4193 | | | | | | | 49 | 3633 | 4461 | 5261 | | | | | | 90 | 3687 | 4505 | 5413 | | | ••• | | | 91 | 12695 | | | | | | | | | | | | | | | | | 92 | 10529 | 4100 | 4693 | | | | | | 93 | 3706 | 4108 | 4697 | 5506 | 6448 | | | | 94 | 3496 | 3877 | 4278 | 4762 | ••• | *** | | | 95 | 3367 | | *** | | | | | | 96 | 4846 | | | | ••• | | | | 97 | 4322 | 5143 | 6126 | 7107 | ••• | | | | 98 | 4661 | | | | | ••• | | | 99 | 2680 | | | | | • | ••• | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | 101 | 5460 | 6050 | 6913 | 8098 | 9476 | | | | 102 | 4224 | 4563 | 4915 | 5790 | 6742 | 7923 | 9374 | | 103 | 4333 | 4683 | 5047 | 5953 | 6939 | 8166 | 9675 | | 104 | 3000 | | | | | | ••• | | 105 | 3000 | | | | | | | | | | | | | | | | | 106 | 3000 | | · | | | | | TABLE B-6: RUNNAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE $80 \, ^{\circ}$ F, ELEVATION 3000 FT MSL | | | | | STAGE VELGET | | | | |-------------|--------------|--------------|-------------|--------------|----------|-------|--------------| | 2306 6 | 1 | 2 | 1 3 | <u> </u> | 5 | 6 | 7 | | 1 | 4358 | 4732 | 5223 | 5942 | 7545 | 7788 | | | | 4283 | 6799 | 7336 | \$628 | 10362 | 12453 | 14358 | | 3 | 5056 | 5514 | 6117 | 6885 | 9023 | 9332 | | | | 3857 | 3979 | 4405 | 5100 | 6120 | 7213 | 9099 | | 5 | 5126 | 5540 | 5971 | 7003 | #3#5 | 10044 | 11549 | | | 4193 | 4671 | 5438 | 6551 | 8098 | 9433 | | | 7 | 3963 | 4429 | 5176 | 6263 | 7767 | 8547 | | | | | | 3523 | 4193 | 4671 | | | | * | 4402 | 3109
5020 | 5583 | 6592 | 8037 | 9636 | 10833 | | 10 | 2799 | 3128 | 1656 | 4424 | 5486 | 6037 | | | 11 | 3637 | 4210 | 4623 | 5426 | 6007 | | | | | | 4678 | 5438 | 6541 | 8066 | 9405 | | | 13 | 4205
5109 | 5677 | 6452 | 7563 | 9079 | 10056 | 11438 | | | | 4958 | 5658 | 6667 | 8055 | 8955 | 10236 | | 14 | 4519 | | | | | | | | 15 | 3718 | 5000 | 0 | 6592 | 8037 | 2676 | 10013 | | 76 | 4402 | 5020 | \$583 | 7563 | 9079 | 9636 | 10033 | | 17 | 3149 | 5677 | 6452 | | <u> </u> | 18056 | 11436 | | 10 | 3489 | 5489 | 11650 | 11650 | 13340 | 12340 | | | 19 | 5638 | 6192 | 6973 | 6237 | 9613 | 11102 | | | 20 | 4513 | 4895 | \$293 | 6168 | 7403 | 8794 | 10420 | | 31 | 6558 | 7123 | 7673 | 8924 | 10696 | 12688 | 14971 | | 22 | 6846 | 7293 | 7993 | 8728 | 10304 | 12025 | ••• | | 23 | 6277 | 6665 | 7272 | 7908 | 9171 | 10537 | 12062 | | 24 | 5968 | 6863 | 7821 | 8841 | | | | | 25 | 6363 | 7056 | 7785 | 8666 | | | | | 26 | 7342 | £179 | 9344 | 10944 | 12805 | | ••• | | 27 | 8377 | 9758 | 11249 | 12713 | | | ••• | | | 6363 | 7056 | 7785 | 8666 | | | ••• | | 29 | 7382 | 8179 | 9344 | 10944 | 12805 | | | | 30 | 7126 | 8286 | 9429 | 10422 | | ••• | | | 31 | 4725 | 5422 | 6041 | 7339 | 8980 | | | | 32 | 4545 | 4973 | 5390 | 6157 | 7196 | 8409 | 9136 | | 33 | 3940 | 4272 | 4629 | 5297 | 6211 | 7265 | 7777 | | 34 | 3939 | 4450 | 5014 | 5657 | 6829 | 8068 | ••• | | 35 | 4545 | \$159 | 5814 | 7125 | | • | | | 36 | 4297 | 4962 | 5573 | 6792 | | ••• | | | 37 | 5911 | 6782 | 7681 | | | | | | 38 | 4460 | 5464 | | *** | •-• | | | | 39 | 4333 | 5096 | 6274 | | ••• | | | | 40 | 5082 | 6176 | 7311 | | ••• | | ••• | | 41 | 2964 | 3681 | 4372 | | * | • | ••• | | 42 | 4324 | 4654 | 5473 | 6494 | ••• | | | | 43 | 5082 | 6176 | 7311 | | *** | | ••• | | 44 | 2964 | 3681 | 4372 | ••• | ••- | ••• | | | 45 | 4324 | 4654 | 5473 | 6494 | | | | | 46 | 3108 | 5852 | 6766 | | | | ••• | | 47 | 4473 | 4995 | 5547 | 6129 | | | | | 44 | 5240 | 6330 | 7528 | | | | ••• | | 49 | 4970 | 5603 | 6375 | 8076 | ••• | | | | 50 | 5495 | 6245 | 7045 | 8914 | | | | | 51 | 1561 | 3631 | 4159 | 4807 | 5672 | | | | 52 | 3593 | 3871 | 4210 | 4825 | 5716 | 6689 | • | | 53 | 3690 | | | ••• | | | | | 54 | 3586 | |
| | | | | | | 5212 | | | | | | | TABLE 8-6: RUNNAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F , ELEVATION 3000 FT MSL (CONTINUED) | ſ | STAGE MEIGHT | | | | | | | | | |--------|--------------|-------|-------|-------------|-------|-------|-------------|--|--| | 2304 0 | 3 | 2 | 3 | • | s | 6 | 7 | | | | 54 | 4136 | | | | | | | | | | 57 | 3945 | | | | | | | | | | 58 | 4633 | | | | | | | | | | 59 | 5234 | | | | | | | | | | 60 | 3779 | | | | | | | | | | 61 | 6550 | | | | ••• | | | | | | 62 | 5243 | | | | | | | | | | 63 | 3635 | 4580 | 6181 | ··· | | | | | | | 64 | 2356 | | | | | | | | | | 65 | 1632 | | ••• | | ••• | ••• | ••• | | | | 66 | 5203 | 6633 | 7930 | | | | ••• | | | | 67 | 3556 | ••• | | | | | | | | | 60 | 3450 | ••• | | | | | | | | | 69 | 1676 | | *** | · · · · · · | | | • | | | | 70 | 4289 | 5663 | 7273 | | | ••• | | | | | 71 | 3049 | 2502 | 0 | ••• | *** | | | | | | 72 | 3415 | 3143 | *** | ••• | | | | | | | 73 | 2807 | | | | | | | | | | 74 | 951 | | | | | | · · · · · · | | | | 75 | 995 | | | | | | | | | | 76 | 2136 | | | | | | | | | | 77 | 943 | | | | | | | | | | 78 | 14702 | | | | *** | | ••• | | | | 79 | 5566 | 8681 | | | | | | | | | 80 | 6915 | 9469 | *** | ••• | | | | | | | 61 | 6473 | 9074 | *** | | | | | | | | 82 | 6902 | 10313 | | | | | | | | | 83 | 5067 | 5638 | 6118 | 7142 | 8540 | 10559 | 12269 | | | | 84 | 5511 | 5965 | 6417 | 7540 | 9049 | 10653 | 12519 | | | | 85 | 4921 | 5721 | 6363 | 7758 | | | | | | | 86 | 4626 | 5344 | 6003 | 7320 | | | ••• | | | | 87 | 3785 | 4103 | 4449 | 1096 | 5979 | 7002 | 7497 | | | | 88 | 4062 | đ | • | | | | | | | | 89 | 4315 | 5299 | 6249 | * | | | | | | | 90 | 4380 | 5351 | 6427 | | | | | | | | 91 | 15127 | | | | | | | | | | 92 | 12506 | | | | | | | | | | 92 | 4402 | 4880 | \$579 | 6540 | 7659 | | | | | | 94 | 4153 | 4605 | 5081 | 5656 | | | | | | | 95 | 3999 | ••• | | | | | | | | | 96 | 5756 | | | | | | | | | | 97 | 5134 | 6109 | 7276 | 8442 | | ••• | | | | | 98 | 5536 | | | | | | | | | | 99 | 3183 | | | | | | | | | | 100 | 4513 | 5004 | 5522 | 6246 | | | | | | | 101 | 5460 | 6030 | 6913 | 8098 | 9476 | | | | | | 102 | 5970 | 6451 | 6952 | 8200 | 9557 | 11245 | 13320 | | | | 103 | 6372 | 6892 | 7433 | 8782 | 10254 | 12089 | 14351 | | | | 104 | 3000 | | | | | | | | | | 105 | 3000 | | | | | | | | | | 106 | 3000 | ••• | | | | | | | | | 107 | 3000 | | | | | | | | | TABLE 8-7: MUNNAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 6000 FT MSL | | STRAGE WEIGHT | | | | | | | | | |-------------|---------------|-------------|-------------|-------|-------------|--------------|-------|--|--| | 2300 4 | 1 | 2 | 3 | 1 | 5 | 6 | 7 | | | | | 4358 | 4732 | 5223 | 5842 | 7545 | 7788 | | | | | 1 | | | | 9925 | | | | | | | 3 | 7231 | 7823 | 8441 | | 11917 | 14319 | 16507 | | | | 3 | 5819 | 6346 | 7039 | 7922 | 10380 | 10735 | | | | | • | 4096 | 4581 | 5072 | \$870 | 7043 | 6300 | 10467 | | | | 5 | \$763 | 6227 | 6711 | 7870 | 9419 | 11279 | 12966 | | | | • | 4193 | 4671 | 5438 | 6551 | 8094 | 9433 | ••• | | | | 7 | 3963 | 4429 | 5176 | 6263 | 7767 | 8547 | | | | | • | 2721 | 3109 | 3523 | 4193 | 4671 | | | | | | , | 4949 | 5642 | 6274 | 7406 | 9027 | 10818 | 12160 | | | | 10 | 2799 | 3126 | 3656 | 4424 | 5486 | 6037 | ••• | | | | 22 | 4142 | 4680 | 5252 | 6176 | 6837 | | | | | | 12 | 4961 | 5520 | 6416 | 7717 | 9518 | 11098 | | | | | 13 | 6117 | 4692 | 7605 | 8915 | 10702 | 11654 | 13484 | | | | 14 | 5120 | 5625 | 6418 | 7561 | 9132 | 10151 | 11600 | | | | 15 | 0 | 0 | • | ••• | | | | | | | 16 | 4949 | 3642 | 6274 | 7406 | 9027 | 10818 | 12160 | | | | 17 | 6117 | 6692 | 7605 | 8915 | 10702 | 11854 | 13484 | | | | 10 | 10886 | 10886 | 13362 | 13362 | 15298 | 15298 | | | | | 19 | 6694 | 7351 | 8279 | 9780 | 11415 | 13185 | ••• | | | | 20 | 5095 | \$525 | 5974 | 6961 | 8352 | 9918 | 11750 | | | | 21 | 7753 | 8422 | 9072 | 10550 | 12646 | 15002 | 17702 | | | | 22 | 7807 | 8316 | 9112 | 9948 | 11741 | 13698 | | | | | 23 | 7189 | 7634 | 8326 | 9054 | 10499 | 12061 | 13863 | | | | 24 | 5968 | 6863 | 7821 | 8841 | | | | | | | 25 | 7483 | 4294 | 9156 | 10191 | | | | | | | 26 | 8729 | 9671 | 11049 | 12942 | 25242 | | | | | | 27 | 9952 | 11592 | 13365 | 15105 | | | | | | | - 20 | 7483 | 8298 | 9156 | 10191 | | | | | | | 29 | 8729 | 9671 | 11049 | 12942 | 15142 | | | | | | 30 | 8423 | 9795 | 11146 | 12320 | | | | | | | 31 | 5605 | 6432 | 7167 | 8708 | 10655 | | | | | | | | | | | | | | | | | 32 | 5191 | 5629 | 6101 | 6967 | 8140 | 9510 | 10331 | | | | 33 | 4347 | 4712 | 5105 | 5840 | 6845 | 8004 | 8566 | | | | 34 | 4329 | 4889 | 5529 | 6211 | 7493 | 8848 | | | | | 35 | 4905 | \$656 | 6372 | 7804 | ••• | | | | | | 36 | 4868 | \$620 | 6311 | 7689 | | | | | | | 37 | 7016 | 8023 | 9323 | | | | ••• | | | | 38 | 5089 | 6235 | | | | | | | | | 39 | 4966 | 3849 | 7188 | | ••• | | | | | | 40 | 5983 | 7270 | 8607 | | | | | | | | 41 | 3481 | 4323 | 5135 | | | | | | | | 42 | 5121 | 5512 | 6483 | 7692 | ••• | | ••• | | | | 43 | 5983 | 7270 | 8607 | | | | | | | | 44 | 3481 | 4323 | 5135 | | | | | | | | 45 | 5121 | 5512 | 6483 | 7692 | | ••• | ••• | | | | 46 | 6011 | 6887 | 7962 | | | | ••• | | | | 47 | 5288 | 5905 | 6557 | 7245 | | | ••• | | | | 48 | 5939 | 7173 | 4529 | ••• | | | | | | | 49 | 5650 | 6368 | 7245 | 9176 | | | ••• | | | | 50 | 6354 | 7220 | \$145 | 10305 | | | ••• | | | | | 4040 | 4346 | 4718 | 5451 | 6431 | | | | | | 51 | | | 1 | 5327 | 6308 | 7378 | | | | | 51
52 | 3970 | 4276 | 4649 | , | , | | | | | | | 3970
4103 | 4276 | | | | | ••• | | | | 52 | | | | | | | | | | TABLE B-7: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 59°F , ELEVATION 6000 PT MSL (CONTINUED) | | STAGE METGET | | | | | | | | | |-------------|--------------|--------------|------|-------------|--------------|-------|-------------|--|--| | IND # | | 2 | 3 | 4 | s | 6 | , | | | | 56 | 4136 | | | | | | | | | | \$7 | 4399 | | | | | | | | | | 50 | 5180 | | | | | | | | | | 59 | 6192 | *** | | | | | | | | | 60 | 4160 | | | | | | | | | | 61 | 7322 | | | | | | | | | | 62 | 6054 | | | | | ••• | | | | | 63 | 3960 | 4989 | 6733 | | | | | | | | 64 | 2613 | | | ••• | | | | | | | 65 | 1778 | | | | ••• | | | | | | 66 | \$667 | 7225 | 8639 | | | | | | | | 67 | 3874 | | | | | ••• | | | | | 68 | 3758 | | | | | | | | | | 69 | 1820 | | | | | | | | | | 70 | 4672 | 6169 | 7923 | | *** | ••• | | | | | 71 | 2232 | 2726 | • | | | | • | | | | 72 | 2631 | 3424 | | | | | | | | | 73 | 3057 | | | | | | | | | | 74 | 928 | | | | | | | | | | 75 | 1004 | | | | | *** | | | | | 76 | 2327 | | | | | | | | | | 77 | 1027 | | | | | | | | | | 78 | 17276 | | | | | ••• | | | | | 79 | 6260 | 9762 | | | ••• | | | | | | 80 | 7779 | 10648 | | | | | | | | | 81 | 4616 | 9885 | | | | ••• | | | | | 82 | 7519 | 11234 | | | | | | | | | 83 | 5744 | 6391 | 6934 | 0092 | 9673 | 11956 | 11009 | | | | 84 | 6267 | 6783 | 7296 | 8571 | 10283 | 12329 | 14210 | | | | 85 | 5582 | 6488 | 7215 | 8794 | | | | | | | 86 | 5073 | 5858 | 6578 | 1016 | | | | | | | 97 | 4381 | 4749 | 5148 | 5897 | | | 8674 | | | | 88 | - 1362 | 0 | 0 | 3657 | 6918 | 8101 | | | | | 89 | 4739 | 5815 | 6854 | | | | | | | | | | | 7434 | | | | | | | | 90 | 17102 | 6190 | | *** | | | ••• | | | | 92 | | | | | | | | | | | | 14072 | | | | | | | | | | 93 | 5034 | 5500 | 6378 | 7475 | \$753 | | | | | | 94 | 4833 | 5359 | 5913 | 6582 | *** | | | | | | 95 | 4448 | | | | | ••• | | | | | 96 | 6659 | | | | | | *** | | | | 97 | 6095 | 7253 | 8639 | 10023 | | | | | | | 98 | 6323 | | | | | ••• | | | | | 99 | 3528 | | | | | | | | | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | | | 101 | 5460 | 6050 | 6913 | 8098 | 9476 | | | | | | 102 | 6256 | 6758 | 7281 | 8581 | 9994 | 11750 | 13906 | | | | 103 | 6435 | 6955 | 7498 | 1941 | 10319 | 12149 | 14402 | | | | 104 | 3000 | | | *** | | | | | | | 105 | 3000 | | | | ••• | | | | | | | | | | | | | | | | | 106 | 3000 | | | | | | | | | TABLE B-8: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F , ELEVATION 6000 PT MSL | | | | | STAGE VELIGET | | | | |------|--------------|--------------|-------|---------------|-------|-------|-------| | IND. | | | | ATMO APTORI | , | , | | | | 1 | 2 | 3 | • | 5 | 6 | 7 | | 1 | 4358 | 4732 | 5223 | 5842 | 7545 | 7788 | | | 2 | 6652 | 7197 | 7766 | 9131 | 10964 | 13173 | 15186 | | , | 5354 | 5836 | 6476 | 7288 | 9549 | 9476 | ••• | | 4 | 3768 | 4215 | 4666 | 5400 | 6479 | 7636 | 9630 | | 5 | 5302 | 5729 | 6174 | 7240 | 8665 | 10376 | 11928 | | 6 | 4193 | 4671 | 5438 | 6551 | 8094 | 9433 | ••• | | 7_ | 3963 | 4429 | \$176 | 6263 | 7767 | 8547 | ••• | | | 2721 | 3109 | 3523 | 4193 | 4671 | ••• | *** | | • | 4553 | 5190 | 5772 | 6813 | 8304 | 9952 | 11187 | | 10 | 2799 | 3128 | 3656 | 4424 | 5446 | 6037 | *** | | 11 | 3811 | 4305 | 4832 | 5682 | 6290 | ••• | | | 73 | 4564 | 5678 | 5902 | 7100 | 8756 | 10210 | ••• | | 13 | 5627 | 6157 | 6997 | 8202 | 9846 | 10906 | 12495 | | 14 | 4718 | 5175 | 5904 | 6956 | 8491 | 9336 | 10671 | | 15 | • | • | 0 | | ••• | ••• | | | 16 | 4553 | 5190 | 5772 | 6813 | 8304 | 9952 | 11187 | | 17 | 5627 | 6157 | 6997 | 8202 | 9846 | 10906 | 12405 | | 18 | 10014 | 10014 | 12293 | 12293 | 14074 | 14074 | | | 19 | 6158 | 6763 | 7616 | 8997 | 10501 | 12129 | | | 20 | 4687 | 5083 | 5496 | 6404 | 7684 | 9124 | 10017 | | 21 | 7132 | 7748 | 8346 | 9706 | 11634 | 13861 | 16285 | | 22 | 7182 | 7650 | 8383 | 9152 | 10801 | 12602 | | | 23 | 6614 | 7023 | 7661 | 8330 | 9659 | 11096 | 12698 | | 24 | 5968 | 6863 | 7621 | 8841 | | | | | 25 | 6885 | 7634 | 8423 | 9376 | | | *** | | 26 | \$030 | 2276 | 10165 | 11906 | 13930 | ••• | | | 27 | 9155 | 10665 | 12295 | 13896 | | | ••• | | 28 | 6885 | 7634 | 9423 | 9376 | | | | | 29 | 4030 | 8898 | 10165 | 11906 | 13930 | | | | 30
 7749 | 9011 | 10254 | 11334 | | | | | 31 | 5157 | 5917 | 6594 | 8011 | 9803 | | | | 32 | 4775 | 5178 | 5613 | 6409 | 7489 | 8749 | 9504 | | 33 | 3999 | 4335 | 4697 | \$373 | 6297 | 7364 | 7861 | | 34 | 3962 | 4497 | 3086 | 5714 | 6894 | 8140 | | | 35 | 4586 | 5203 | 5862 | 7179 | | | | | 36 | 4472 | 5167 | 5798 | 7064 | | | | | 37 | 6455 | 7381 | 8577 | 7004 | | ••• | | | | | | | | | | | | 38 | 4569 | 5736
5373 | 6613 | | | | | | | | | | | | | | | 40 | 5504 | 6689 | 7918 | | | | | | 41 | 3202 | 3977 | 4724 | | | | | | 42 | 4717 | 5071 | 5964 | 7077 | | | | | 43 | 5504 | 6689 | 7918 | | | | | | | 3202 | 3977 | 4724 | | | | | | 45 | 4712 | 5071 | 5964 | 7077 | | | | | 46 | 5530 | 6336 | 7325 | | | | | | 47 | 4864 | 5432 | 6032 | 6665 | | • | ••• | | 48 | 5464 | 6599 | 7846 | | | | | | 49 | 5198 | 5859 | 6665 | 8442 | | ••• | | | 50 | 5845 | 6643 | 7493 | 9480 | | | | | 51 | 3717 | 3996 | 4340 | 5015 | 5917 | | ••• | | 52 | 3651 | 3933 | 4276 | 4900 | 5802 | 6786 | | | 53 | 3775 | ••• | | | | ••• | | | 54 | 3638 | ••• | | | | | | | 55 | 5616 | | | | | ••• | | | | | | | | | | | TABLE 8-8: RUNWAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 40°F , ELEVATION 6000 PT MSL (CONTINUED) | ſ | STAGE WEIGHT | | | | | | | | | | | |--|---|-----------------------------|------------------|-------------|--|---------------|--------------------|--|--|--|--| | 2304 6 | | | | | <u>, </u> | | | | | | | | | 1 | 2 | 3 | • | 5 | 6 | 7 | | | | | | 56 | 4136 | | | | | | | | | | | | 57 | 4047 | | | | | | • | | | | | | 50 | 4766 | | | | | | | | | | | | 59 | 5697 | | | | | ••• | ••• | | | | | | 60 | 3834 | ••• | • • • | | | | | | | | | | 61 | 6736 | ••- | | | | | ••• | | | | | | 62 | 5569 | | | | | | | | | | | | 63 | 3576 | 4505 | 6080 | | | ••• | | | | | | | 64 | 2404 | | | | | | ••• | | | | | | 65 | 1606 | | | | | ••• | ••• | | | | | | 66 | 5117 | 6524 | 7800 | | | | ••• | | | | | | 67 | 3498 | | | | | ••• | ••• | | | | | | 68 | 3394 | | | | | | | | | | | | 69 | 1643 | | | | | | ••• | | | | | | 70 | 4238 | 5571 | 7154 | | | | ••• | | | | | | 71 | 3615 | 2461 | • | | | ••• | | | | | | | 72 | 2376 | 3092 | | | | ••• | ••• | | | | | | 73 | 2761 | | | | | ••• | | | | | | | 74 | 838 | | | | | | | | | | | | 75 | 979 | | | | | ••• | | | | | | | 76 | 2101 | | | | | | | | | | | | 77 | 927 | | | | | ••• | | | | | | | 78 | 15893 | | | | | ••• | | | | | | | 79 | 5759 | 8981 | | | | | | | | | | | 80 | 7156 | 9796 | | | | | | | | | | | 81 | 5974 | 6926 | | | | | | | | | | | 82 | 6789 | 10144 | | | | | | | | | | | 83 | 5285 | 5879 | 6379 | 7444 | 6899 | 10999 | 12777 | | | | | | 14 | 5766 | 6240 | 6712 | 7885 | 9460 | 11342 | 13080 | | | | | | 85 | 5135 | 5969 | 6638 | 8090 | | | ••• | | | | | | 16 | 4667 | 5389 | 6052 | 7374 | | | | | | | | | 0 7 | 4030 | 4369 | 4736 | 5425 | 6364 | 7453 | 7980 | | | | | | 0.0 | 0 | • | | | | | | | | | | | 89 | 4360 | 5349 | ₹305 | | | | | | | | | | 90 | 4662 | 5695 | 6840 | | | | | | | | | | 91 | 15711 | | | | | | | | | | | | 92 | 12946 | | | | | | | | | | | | 93 | 4631 | 5133 | 5868 | 6877 | 8052 | | | | | | | | 94 | 4446 | 4930 | 5440 | 6055 | | *** | | | | | | | 95 | 4092 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | 96 | 6126 | | | | | | | | | | | | 97 | \$607 | 6673 | 7948 | 9221 | | ••• | | | | | | | 98 | 5817 | | | | | | | | | | | | | 3245 | | | | | ••• | | | | | | | | ~~~~~ | 5004 | 5522 | 6146 | | | | | | | | | 100 | 4613 | | 1 2344 | | | | | | | | | | 100 | 4513 | | 50:1 | | | | | | | | | | 100 | 5460 | 6050 | 6913 | 3303 | 9476 | *** | 334.7 | | | | | | 100
101
102 | 5460
5327 | 6050
5754 | 6198 | 7301 | 8499 | >>+1 | 11815 | | | | | | 100
101
102
103 | \$460
\$327
\$395 | 6050
5754
5830 | 6198
6283 | 7301 | 8499 | 9908
10160 | 11815
12035 | | | | | | 100
101
102
103
104 | \$460
\$327
\$395
3000 | 5050
5754
5630 | 6198 | 7301 | 8499 | 10160 | 11815
12035 | | | | | | 100
101
102
103
104
105 | \$460
\$327
\$395
3000
3000 | \$050
\$754
\$830
 | 6198
6283
 | 7301 7410 | 8499
8636
 | 9988
10160 | 11815
12035
 | | | | | | 100
101
102
103
104 | \$460
\$327
\$395
3000 | 5050
5754
5630 | 6198 | 7301 | 8499 | 10160 | 11815
12035 | | | | | TABLE 8-9: RUNWAY REQUIREMENTS/OFERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F, ELEVATION 6000 FT MSL | | STAGE WEIGHT | | | | | | | | |--------|--------------|--------------|--------------|--------------|--------------|-------|---------------------------------------|--| | 2304 # | 1 | 2 | 3 | 1 | 5 | 6 | 7 | | | 1 | 4358 | 4732 | 5223 | 5842 | 7545 | 7768 | | | | | 7902 | 8549 | 9224 | 10046 | 13023 | 15647 | 10030 | | | | 6359 | 6935 | 7692 | 8657 | 11342 | 11730 | | | | | 4476 | 5006 | 5542 | 6415 | 7696 | 9070 | 11416 | | | | | | | 8600 | 10293 | | | | | 5 | 6297 | 6805 | 7334 | | | 12325 | 14168 | | | | 4193 | 4671 | 5438 | 6551 | 8098 | 9433 | | | | 7 | 3963 | 4429 | 5176 | 6363 | 7767 | 8547 | | | | | 2721 | 3109 | 3523 | 4193 | 4671 | | | | | | 5408 | 6165 | 6856 | 6093 | 9864 | 11622 | 13288 | | | 10 | 2799 | 3128 | 3656 | 4424 | 3486 | 6037 | | | | 11 | 4526 | 5114 | 5739 | 6749 | 7471 | ••• | | | | | 5421 | 6032 | 7011 | 8433 | 10401 | 12127 | | | | 13 | 6684 | 7313 | #311 | 9742 | 11695 | 12954 | 14735 | | | 14 | 5604 | 6147 | 7013 | 8262 | 3979 | 11092 | 12676 | | | 15 | 0 | 0 | • | | ••• | | | | | 16 | 5408 | 6165 | 6056 | 8093 | 9864 | 11822 | 13288 | | | 17 | 6684 | 7313 | #311 | 9742 | 11695 | 12954 | 14735 | | | 18 | 11895 | 11895 | 14601 | 14601 | 0 | ۰ | | | | 19 | 7315 | 8033 | 9047 | 10687 | 12474 | 14408 | | | | 20 | 5567 | 6038 | 6529 | 7607 | 9127 | 70838 | 12849 | | | 21 | 8472 | 9203 | 9913 | 11529 | 13819 | 16393 | 19344 | | | 22 | 8531 | 9087 | 9957 | 10871 | 12830 | 14969 | ••• | | | 23 | 7856 | 8342 | 9100 | 9894 | 11473 | 13179 | 15083 | | | 24 | 5968 | 6863 | 7821 | 8841 | | *** | | | | 25 | 8178 | 9068 | 10005 | 11137 | | | ••• | | | 26 | 9539 | 10569 | 12074 | 14142 | 16567 | | | | | 27 | 10875 | 12668 | 14604 | 16506 | | ••• | | | | 28 | 8178 | 9068 | 10005 | 11137 | | ••• | ••• | | | 29 | 9539 | 10569 | 12074 | 14142 | 16547 | ••• | | | | 30 | 9204 | 10703 | 12180 | 13463 | | ••• | | | | 31 | 6125 | 7029 | 7832 | 9516 | 11644 | | | | | 32 | 5672 | 6252 | 6667 | 7613 | 8895 | 10392 | 11289 | | | 33 | 4750 | 5149 | 5579 | 6382 | 7480 | 8747 | 9161 | | | 34 | 4730 | 5342 | 6042 | 6787 | 8188 | 9669 | | | | 35 | 5447 | 6280 | 6963 | 8528 | | | | | | 36 | 5227 | 6151 | 6907 | 8415 | | | | | | 37 | 7667 | 8767 | 10188 | | | | | | | 38 | 5562 | 6813 | | | | | | | | 39 | 5427 | 6382 | 7855 | | | | | | | 40 | 6538 | 7945 | 9405 | | | | | | | 41 | 3804 | 4724 | 5622 | • | | | | | | 42 | 5596 | 6024 | 7084 | 8406 | | | | | | 43 | 6538 | 7945 | 9405 | | | | | | | 44 | 3804 | 4724 | 5611 | | | | | | | 45 | 5596 | 6024 | 7084 | 8406 | | | | | | 46 | 6569 | 7526 | 8701 | | | | *** | | | 47 | 5778 | 6452 | 7165 | 7917 | | | | | | 48 | 6490 | 7838 | 9320 | | | | | | | | | | | | | | | | | 49 | 6174 | 6959 | 7917 | 10027 | | | · · · · · · · · · · · · · · · · · · · | | | 50 | 6943 | 7890 | 6901 | 11261 | | | • | | | 51 | 4415 | 4749 | 5156 | 5957 | 7028 | | | | | 52 | 4339 | 4674 | 5082 | 5823 | 6895 | 8065 | | | | 53 | 4484 | | | | | | *** | | | 54 | 4559 | | | | | | | | | 55 | 6670 | | | | | *** | | | | | | | | | | | | | TABLE B-9: RUNMAY REQUIREMENTS/OPERATIONAL BOUNDARIES OF THE PROFILE GENERATOR, TEMPERATURE 80°F, ELEVATION 6000 FT MSL (CONTINUED) | | | · · · · · · · · · · · · · · · · · · · | | STAGE WEIGHT | | | | |--------|-------|---------------------------------------|------|--------------|-------|-------|-------| | Z706 # | 1 | 2 | 3 | • | s | 6 | 7 | | 56 | 4136 | | | | | | | | 57 | 4807 | | | | | | | | 58 | \$661 | | | | | | | | 59 | 6766 | | | | • | | | | 60 | 4555 | | | | | | | | 61 | 8001 | | | | | | | | 63 | 6615 | | | | | | | | 63 | 6616 | 5561 | 7505 | | | | | | 64 | 2855 | | | | | ••• | ••• | | 65 | 1902 | | | | | | | | 66 | 6317 | 8054 | 9629 | | | | | | 67 | 4328 | | | | | | | | 68 | 4189 | | | | | ••• | | | 69 | 2028 | | | | *** | | | | 70 | \$207 | 6876 | 6631 | | | | | | 71 | 2487 | 3018 | 0 | | | | | | 72 | 2933 | 3817 | ••• | | | | | | 73 | 3408 | | ••• | | | | | | 74 | 1034 | | | | *** | | | | 75 | 1208 | | **- | | ••• | ••• | | | 76 | 2593 | | *** | | | | | | 77 | 1145 | | ••• | | ••• | | | | 78 | 18878 | | ••• | | • | ••• | ••• | | 79 | 6840 | 10668 | • | | | | ••• | | 80 | 8580 | 11636 | | | | | | | 81 | 7374 | 11018 | | | | | | | 82 | 8381 | 0 | | | | | | | 83 | 6277 | 6983 | 7577 | 8842 | 10570 | 13065 | 15177 | | 84 | 6848 | 7412 | 7973 | 93\$6 | 11237 | 13473 | 15537 | | 85 | 6100 | 7090 | 7884 | 9609 | ••• | | ••• | | 86 | 5544 | 6401 | 7188 | 8759 | | | ••• | | 87 | 4787 | 5190 | 5626 | 6444 | 7559 | 8853 | 9478 | | 66 | 0 | • | • | | ••• | | | | 89 | 5178 | 6354 | 7489 | ••• | | | • | | 90 | 5538 | 6764 | 8124 | | | | ••• | | 91 | 18717 | | | | | | | | 92 | 15377 | ••• | | | | | | | 93 | 5501 | 6097 | 6970 | \$169 | 9565 | ••• | | | 94 | 5281 | 5856 | 6462 | 7193 | ••• | ••• | | | 95 | 4860 | | | | | | | | 96 | 7277 | ••• | • | | | | | | 97 | 6660 | 7926 | 9440 | 10953 | | | | | 98 | 6909 | | | | | | | | " | 3855 | | | | | | | | 100 | 4513 | 5004 | 5522 | 6146 | | | | | 101 | 5460 | 6050 | 6913 | 8092 | 9476 | | | | 102 | 7503 | \$107 | 6737 | 10302 | 12006 | 14124 | 16729 | | 103 | 7878 | 8519 | 9187 | 10851 | 12665 | 14926 | 17713 | | 104 | 3000 | | | | | | | | 105 | 3000 | | | | | | | | 106 | 3000 | ••• | | | | | | | 107 | 3000 |
••• | | | ••• | | | #### APPENDIX C #### AIRPLANE RUNUP OPERATIONS This Appendix discusses the adaptation of an existing INM equation for use in computing runup noise within INM Version 4.11. This equation, also used in the Time-Above-Threshold (TA) equation, can be used to approximate the maximum A-weighted sound level (L_{MMX}) and the maximum tone-corrected perceived noise level $(\text{PNLT}_{\text{MAX}})$ for a one-second time period as follows: $$L_{\text{AMAX}} = \text{SEL} - 10\log_{10}[((500\pi)/(V))(.001R_0)^{(k)}] \text{ and}$$ (1) $$PNLT_{MAX} = EPNL - 10log_{10}[((500\pi)/(V))(.001R_0)^{(k)}] + 10,$$ (2) > EPNL = the Effective Perceived Noise Level from the Noise-Power-Distance data base (dB); V = the airplane velocity (ft/sec); R₀ = the closest point of approach from airplane to receiver (ft); k = a constant exponent with a fixed value of 0.6 in the INM; and for Equation (2), 10 = a duration correction as discussed in Section 2.3, Equation (2). The above equations assume: (1) an approximate shape of an airplane's sound level time history; and (2) symmetry in the time history trace around the L_{AMAX} or PNLT_{MAX}, as appropriate. The $L_{\text{AMAX}}/\text{PNLT}_{\text{MAX}}$ values computed with these equations were verified using measured $L_{\text{AMAX}}/\text{PNLT}_{\text{MAX}}$ data in the literature. 1 Given the computed $L_{\text{MMAX}}/\text{PNLT}_{\text{MAX}}$ and the user-defined duration and location for a runup, the SEL/EPNL for the runup is computed by multiplying the acoustic energy associated with the $L_{\text{MMAX}}/\text{PNLT}_{\text{MAX}}$ by the user-defined duration, and converting the total runup energy to a decibel value as follows: $$SEL_{MAX} = 10\log_{10}[(DUR)10exp(L_{MAX}/10)] \text{ and}$$ (3) | where | $\mathtt{SEL}_{\mathtt{RUNUP}}$ | = | the Sound Exposure Level for the runup (dBA); | |-------|---------------------------------|---|--| | | EPNLRUNUP | = | the Effective Perceived Noise Level for the runup (dB); | | | DUR | = | the user-defined duration of the runup (seconds); | | | L _{AMAX} | = | the maximum A-weighted sound level computed, using Equation (1); | | and | PNLT _{MAX} | = | the maximum tone-corrected perceived noise level computed, using Equation (2). | The SEL_{RUNUP} value from Equation (3) is then used to complete the noise exposure due to runup operations for all INM noise metrics, except NEF and WECPNL. The noise exposure due to runup operations for NEF and WECPNL are computed using the EPNL_RUNUP value from Equation (4). #### C.1 Verification The runup enhancement within INM Version 4.11 was verified using measured runup noise level data for the A320 airplane with the newer CFM56-5-A1 engine, and the B747 airplane with the older JT9D-7A engine.^{2,3} The measured data for the A320 agree extremely well with INM-predicted data, i.e., ± 3 dB with a mean difference of .6 dB and a standard deviation of 2.2 dB, for receivers located at angles of 0, 45, 90, 120, 135, and 180 degrees relative to the nose of the airplane. Note: At 180 degrees, the data used for comparison with the predicted levels were obtained by linear extrapolation of measured data. The agreement between measured and predicted data at the above six receiver locations was essentially independent of thrust for thrusts of 78, 86, and 90 percent N1. At the 150 degree location, the agreement was only modest. INM Version 4.11 overstated the noise by approximately 6 dB at thrust levels of 86 and 90 percent N1, and by almost 12 dB at 78 percent N1. Similar results were observed for the B747 airplane at all receiver locations. The agreement between measured and predicted runup noise levels could be improved if the INM maintained a detailed data base of measured runup directivity patterns for all airplanes as a function of distance and thrust. In lieu of developing such a substantial and potentially costly data base, the simplified directivity pattern discussed in Appendix A is a reasonable approximation of runup directivity. #### C.2 References - Bishop, D.E., Beckman, J.M., Bucka, M.P., <u>Revision of Civil Aircraft Noise Data for the Integrated Noise Model (INM)</u>, Report No. 6039, Project No. 04453, Canoga Park, CA: BBN Laboratories Incorporated, September 1986. - 2 <u>A320 Noise Definition Manual NDM</u>, FRANCE: Airbus Industrie, 1990. - An Excerpt from the Model B747 Flight Manual, <u>A-Weighted Noise Level Contours</u>, Seattle, WA: Boeing Commercial Airplane Company, 1986. #### APPENDIX D #### INM INPUT TESTCASE This Appendix presents a copy of the INM Input Testcase, revised to reflect several INM Version 4.11 enhancements. The revised Testcase includes an airplane runup definition, and an approach runway threshold definition. The entry related to data base selection, contained in the PROCESS section of previous versions of the Input Testcase, has been deleted; the ACDB11.EXE computer program, included with the INM Version 4.11 release, should be used to access/print all elements of Data Base Number 11. The Input Testcase contained herein is included with the Version 4.11 release. #### BEGIN. #### SETUP: TITLE CAMBUAL AVERAGE EXPOSURE AT AN EXAMPLE OF A MEDIUM HUB AIRPORT-AIRPORT CEXAMPLE MHA> ALTITUDE 0 TEMPERATURE 59 F RUMMAYS RM 09L-27R 0 0 TO 9487 -497 HEADING-93 RW 27L-09R 4203 -1410 TO -6920 -1044 HEADING-272 RW 35-17 7355 1366 DT 100 TO 6407 6742 #### AIRCRAPT: AC 747200 AC 747200 AC DC1030 AC DC870 AC A300 AC 757PM AC 727015 AC DC930 AC MD81 AC 737300 AC SABREO AC BECSEP AC S-76 CURVE-250C30 PARAM-HELI STAGE 1-HORFLT CATEGORY-PGA MOISE CURVES #### 3 BY 8 3 BY 6 NC 250C30 RPML. THRUSTS 91.2 87.2 84.5 80.7 75.1 97.2 200 90.2 85.8 83.1 93.1 400 90.6 87.4 82.6 600 79.4 73.7 67.6 1000 2000 77.2 73.7 4000 68.2 63.8 6000 63.1 10000 57.4 68.7 56.8 SEL THRUSTS 2 3 88.6 84.2 90.0 85.6 95.6 200 400 600 81.5 77.8 82.9 79.1 89.0 85.8 1000 2000 72.1 73.5 81.0 66.0 66.6 75.6 72.1 4000 6000 #### APPROACH PARAMETERS AP HELI WEIGHT=10000 ENGINE=2 STOP=1 PINSP=160 TAXI=160 LNDFPS=3 INT.NM. #### PROFILES APPROACH PF ALT3D SEGMENTS=7 DISTANCES 20. 10. 5. 3. 1. -.164 STOP ALTITUDES 6000 3236 1644 1007 370 0 0 SPEEDS TERMSP INTSP APPSP FINSP LNDSP REVSP TAXI THRUSTS INTFIS APPFAS LNDFFS LNDFLS REV IDLE PF COPTR SEGMENTS=7 DISTANCES 3.9 3.1 2.4 1.6 0.8 0 0 ALTITUDES 2500 2000 1500 1000 500 0 0 SPEEDS FINSP FINSP FINSP FINSP FINSP FINSP FINSP TAXI THRUSTS LNDFFS LNDFFS LNDFFS LNDFFS LNDFFS ECHO. FT. #### PROPILES TAKEOFF | PF | HORFLT | SEGMENTS=8 | WEIGH | r=10000 | ENGINE. | S=2 | | | | |----|----------|------------|-------|---------|---------|------|------|-------|-------| | | DISTANCE | S 0 | 1376 | 4126 | 6876 | 6877 | 9626 | 10000 | 15000 | | | ALTITUDE | S 0 | 0 | 500 | 1000 | 1000 | 1500 | 1500 | 1500 | | | SPEEDS | 32 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | | | THRUSTS | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | #### COMMENTS: Note: Standard conditions have been defined. To implement the takeoff profile generator see Section 2.1. In addition, the elevation enhancement has not been selected. To implement elevation see Section 2.2. Note: A runway touch-down point of 1054 ft has been defined for approach operations on Runway 35 (i.e., 100 ft for the user-defined D7 plus 954 ft for the fixed touch-down point). #### THY . IM. ``` TARBOFFS BY FREQUENCY: OPER DC930 STAGE 1 D-26.5 N-.5 STAGE 2 D-6 N-.5 STAGE 3 D=1.5 OPER HD81 STAGE 2 D=1.0 OPER 737300 STAGE 1 D=1.5 N=.5 TRACK TR2 RWY 27R STRAIGHT 4.1 LEFT 86 D 1.6 STRAIGHT 50 OPER DC1030 STAGE 1 D=1.5 STAGE 2 D=3 STAGE 3 D=1 STAGE 4 D=1 STAGE 5 D=.5 STAGE 6 D=.5 OPER DC670 STAGE 1 D=2 N=.5 STAGE 2 D=3.5 N=1 STAGE 3 D=1 STAGE 4 D=2.5 STAGE 5 D=1 STAGE 6 D=.5 OPER A300 STAGE 2 D=2 STAGE 3 D=1 OPER 727Q15 STAGE 1 D=6 N=1 STAGE 2 D=4.4 N=1.4 STAGE 3 D=1.8 TRACK TR3 RWY 09R STRAIGHT 1.3 LBFT 15 D 1.0 STRAIGHT 1.4 RIGHT 57 D 1.8 STRAIGHT .5 RIGHT 50 D 1.6 STRAIGHT 50 OPER DC870 STAGE 1 D=2 N=.5 STAGE 2 D=3.5 N=1 STAGE 3 D=1 STAGE 4 D=1.5 STAGE 5 D=.5 OPER 757PW STAGE 3 D=2.5 OPER 727Q15 STAGE 1 D=21 N=2.5 STAGE 2 D=16.5 N=4 STAGE 3 D=8 N=.5 OPER DC930 STAGE 1 D=26.5 N=.5 STAGE 2 D=8 N=.5 STAGE 3 D=1.5 OPER DC930 STAGE 1 D=26.5 N=.5 STAGE 2 D=8 N=.5 STAGE 3 D=1.5 OPER MD81 STAGE 1 D= 3 N=.5 OPER 737300 STAGE 2 D=.5 TRACK TR4 RWY 27R STRAIGHT 4.1 LEFT 230 H 2.2 STRAIGHT 50 OPER SABR80 STAGE 1 D=3 N=.1 TRACK TRS RWY 35 STRAIGHT 50 OPER SABRSO STAGE 1 D=30.5 N=2.5 OPER BECSSP STAGE 1 D=13 N=1 TRACK TR6 RWY 17 STRAIGHT 50 OPER SABREO STAGE 1 D=12.5 N=.5 OPER BECSEP STAGE 1 D=30 N=3 ``` TRACK TR7 RWY 17 STRAIGHT 1.5 RIGHT 265 H .25 STRAIGHT 3 LEFT 245 H 1.0 STRAIGHT 50 OPER S-76 STAGE 1 D=5 LANDINGS BY PERCENTAGE: OPER 747200 PROF-STD3D D-3 N-0 OPER DC1030 PROF-STD3D D-22 N-2 OPER DC870 PROF-ALT3D D-22 N-2 OPER A300 PROF-STD3D D-2 N-1 OPER 757PW PROF-STD3D D-6 N-1 OPER 727Q15 PROF-ALT3D D-70 N-10 OPER DC930 PROF=ALT3D D=70 N=4 OPER MD81 PROF=STD3D D=4 N=.5 OPER 737300 PROF-STD3D D=1.5 N=.5 OPER SABREO PROF-STD3D D=25 N=2 OPER BEC58P PROF-STD5D D=42 N=5 PROF-COPTR D-5 TRACE TRE RWY 27R STRAIGHT 50 RIGHT 82 D 1.5 STRAIGHT 4.2 PERCENT COM-72 GA-0 TRACK TR9 RWY 09R HEADING 260 STRAIGHT 50 RIGHT 272 H 1.5 STRAIGHT 7 PERCENT COM-28 GA-0 TRACK TRIO RWY 35 STRAIGHT 50 PERCENT COM-0 GA-30 TRACK TR11 RWY 17 STRAIGHT 50 PERCENT COM=0 GA=70 TOUCHNGOS BY FRROUENCY: TRACK TR14 RWY 17 STRAIGHT 3 LEPT 180 D 2.0 STRAIGHT 6 LEFT 180 D 2.0 STRAIGHT 3 OPER BEC58P STAGE 1 PROF STD5D D=23 #### COMMENTS: Mote: A runup operation has been defined for the B747-200 airplane. The runup takes place at the start of Runway 09L and lasts for 10 seconds, (i.e., in terms of average yearly duration). PROCESSES: PT. MONARM. GRID NEF LDW TA START=-3000 1500 STEP=1000 700 SIZE=2 BY 3 GRID LEQ TA DBA=75 START=11000 3000 STEP=0 0 SIZE=1 BY 1 DETAIL COMTOUR LDW AT 65 75 PLOT SIZE=11 8.5 SCALE=8000 MMD. #### APPENDIX E #### WINM USER'S MANUAL This Appendix contains a copy of the User's Manual for the WINM
computer software, an INM Version 4.11 plotting program for use with Microsoft Windows. The WINM software and its User's Manual, contained herein, were prepared by the SysTeam Corporation under contract to the FAA. # WINM Windows Plotting Program Supplement to Integrated Noise Model Version 4.11 # User's Manual November 17, 1993 Prepared by: Tung X. Le Thach X. Le SysTeam Corporation Gaithersburg, MD Prepared for: Federal Aviation Administration Washington, DC FAA Contract # DTFA01-92-Y-01042 Task Order #1 #### 1.0 INTRODUCTION This User Guide is a combined tutorial-manual that comes to you as part of WINM 4.11. # 2.0 OPERATIONAL REQUIREMENTS #### Software/Hardware Requirements WINM has the same software and hardware requirements as Microsoft Windows 3.x. # 3.0 INSTALLATION Before you start, make sure that you have all the material supplied with WINM 4.11 and check that your equipment matches the list in Chapter 2. #### Installation Procedure WINM comes with four files under the directory \INM411. These files will be installed as part of the primary INM installation. They are: WINM.EXE - The window plot program for INM INMINPUT.TST - Test case version of input data CONTOURS.TST - Test case version of contour data INMCOLOR DATA - Color control file #### Windows Installation of WINM - Start up Windows by typing WIN. - Open Windows' Program Manager. - Open the Windows File menu. Select New. - The New Program Object dialog box will appear. - Select Program Group and click on OK. - The Program Group Properties dialog box will appear. - Type WINM in the Description field. Click on OK. - Open the Windows <u>File</u> menu. Select <u>New</u>. - The New Program Object dialog box will appear. - Select Program Item and click on OK. • The *Program Item Properties* dialog box will appear. Enter the text in the fields as indicated: For Window 3.1 environment: Description: WINM v4.11 Command line: C:\INM411\WINM Working Directory: C:\INM411 Shortcut Key: None For Windows 3.0 environment: Description: WINM 4. 11 Command line: C:\INM411\WINM Shortcut Key: None - Click on OK. - Run WINM by double clicking the WINM icon. #### 4.0 TUTORIAL #### **About the Tutorial** The tutorial has been structured so that the exercises will give you progressive familiarity with the operations that you will carry out within WINM 4.11. # 4.1 Loading INM Files The starting point for this exercise is the default screen you see as soon as you start WINM 4.11 from the Windows *Program Manager*. By default, WINM uses two default INM input files. To load a different set of input files, - Place the mouse pointer arrow on Files in the menu bar; and - Click once on the left mouse button. - In the menu, click the mouse pointer on Load. See the Load dialog box. ## About the Load Dialog Box This menu option loads the INM input file and INM contour file. By default, test files "inminput.TST" "contours.TST" are chosen. Examples of standard input files are in the square brackets. For this exercise, the default selections will not be changed. If you desire to select another set of INM input files in the future, use the *Tab* key to highlight the appropriate text field, then press the *Backspace* key to delete the default entry. Type in the appropriate file name. When correct, click on *OK*. For now, click on *Cancel* to close this window and continue with the tutorial. # 4.2 Adjusting the Data Display Information In the menu, click the mouse pointer on Displays. See the Displays dialog box. #### About the Displays Dialog Box This menu option allows the user to select which data display information is to be shown. Select any option one at a time and click on Apply to see its effect immediately. Experiment with as many combinations as you like. Text labels may be independently selected for each displayed item type by clicking on the Label box next to each item. # 4.2.1 Runways This radio button turns on/off the display of the runways. # 4.2.2 Flight Tracks This radio button turns on/off the display of the flight tracks. #### 4.2.3 Noise Contours This radio button turns on/off the display of the noise contours. #### 4.2.4 Fill Contours This radio button turns on/off the option to fill the contours. #### 4.2.5 Noise Sensitive Area Although every one of these options depends on the INM input files selected, the Noise Sensitive Area is a special option. This menu option displays user-defined sensitive noise areas. These areas are defined after the END statement of the INM input data file (FOR03.DAT), and each can be either a polygon, square, circle, or point. The area can be defined in NM or FEET and a descriptive text label for label description of the area can be inserted after an asterisk (*) at the end of the line. The user can input/modify these data before or after running the noise model (but not during running the WINM program). The following shows an example of the descriptive text labels as seen in the default INM input filename 'inminput.TST': #### NOISE-AREA P NM -10.0 -10.0 -5.0. 5.0 10.0 10.0 5.0 -5.0 * Poly Area C NM -7.0 2.0 0.5 * Circle 1 C NM -6.0 4.0 0.7 * Circle 2 R NM -5.0 5.0 0.5 0.5 * Rect 1 R NM -5.0 3.0 0.7 0.7 * Rect 2 M NM 3.0 3.0 * Point 1 M NM 3.0 2.0 * Point 2 M FT 3000.0 1000.0 * Point 3 M FT 5000.0 2000.0 * Point 4 The formats for these areas are defined as follows: #### **NOISE-AREA** - P <NM> <X1> <Y1> <X2> <Y2> ... <Xn> <Yn> * <Polygon Label> Polygon area defined in NM followed by a series of X, Y points in NM with a label of Polygon Label'. - C <FT> <Xc> <Yc> <Radius> * <Circle Label> Circle area defined in FT with its center at Xc, Yc, and its Radius with a label of 'Circle Label'. - R <FT> <Xc> <Yc> <Width> <Height> * <Rectangular Label> Rectangle area defined in FT with its center at Xc, Yc, and its Width and Height from the center with a label of 'Rectangular Label'. - M <NM> <X> <Y> * <Point Label> Mark point defined in NM at X, Y with a label of 'Point Label'. Click on OK to leave the Displays dialog box. ## 4.3 Zoom #### About the Zoom Menu WINM 4.11 offers you the capabilities to zoom in/out of various sections of the display for specialize viewing. We will now become familiarized with the zooming capabilities within WINM 4.11. - Place the mouse pointer arrow on **Zoom** in the menu bar; and - Click once on the left mouse button. You will see the drop-down Zoom menu appear. • In the menu, click the mouse pointer on **Zoom In**. A zoom box will appear in the center of the screen. - Move the mouse to expand/shrink the zoom box. - If you desire to move the zoom area, hold down the right button and drag the zoom box to a different area. - Click the left button to accept zoom. Note! At any time, click the right button to cancel the zoom box. Zoom Qut works similar to Zoom In. - Place the mouse pointer arrow on **Zoom** in the menu bar; and - Click once on the left mouse button. You will see the drop-down **Zoom** menu appear. • In the menu, click the mouse pointer on Zoom Qut. A zoom box will appear. - Move the mouse to expand/shrink the zoom box. - If you desire to move the zoom area, hold down the right button and drag the zoom box to a different area. Click the left button to accept zoom. Note! At any time, click the right button to cancel the zoom box. Zoom Control allows you more precise zoom control. - Place the mouse pointer arrow on the Zoom menu; and - Click once on the left mouse button. You will see the drop-down Zoom menu appear. • In the menu, click the mouse pointer on **Zoom Control**. See the Zoom Control dialog box. This menu option allows you to set the scale value to a specific scale (i.e. 3.352 nm per scale unit) and to set the number of tic marks between the scale unit marks (default is 1). You can change these values anytime. For now, let's continue with the exercise. Click on Cancel to leave the Zoom Control dialog box. #### 4.4 Scale #### About the Scale Menu WINM 4.11 offers you the capabilities to change the scale on which the display units. We will now become familiarized with the scaling capabilities within WINM 4.11. - Place the mouse pointer arrow on Scale in the menu bar; and - Click once on the left mouse button. You will see the drop-down Scale menu appear. • In the menu, click the mouse pointer on any of the menu selections to see its effect to the scale shown at the bottom right-hand corner. We have now covered the major capabilities of WINM 4.11. Let's print the display to a printer. - Place the mouse pointer arrow on Files in the menu bar; and - Click once on the left mouse button. You will see the drop-down Files menu appear. • In the menu, click the mouse pointer on *Print*. A submenu will appear. #### 4.5 Print # **About the Print Menu Option** This menu option allows a hard copy output to a printer. The printout will go to the default printer which can be set via Printers in Control Panel. #### Actual Scale This menu option allows the user to print the current screen for scaling. The scale unit will reflect 1 inch on the hardcopy printout. #### Screen Zoom This menu option allows the user to print the current screen at the current zoom factor. The left and right edges of the hardcopy printout will be set to match the left and right edges of the screen display. If the printer's page orientation is set to 'Landscape' in the Windows *Print Manager*, then the top and bottom edges of the hardcopy printout will be set to match the top and bottom edges of the screen display as well. To print what is displayed, select Screen Zoom. You can now exit the program. - Place the mouse pointer arrow on Files in the menu bar; and - Click once on the left mouse button. You will see the drop-down Files menu appear. • In the menu, click the mouse pointer on Exit. This menu option exits the program. The current display setup (contours on/off, tracks on/off, etc.) will be saved when the program is restarted, this setup will be recalled. CONGRATULATIONS!! You have completed the tutorial. # 5.0 Others ####
Move Origin The user can move the origin by clicking on a point using the mouse's right button, holding it down, and dragging it to a new location. #### Colors for Display The user can modify the colors displayed on screen by modifying the appropriate fields in the file INMCOLOR.DAT. For every increment of 16 colors (up to 256), a new fill pattern will be automatically introduced. The user can modify the color file until the desired colors/patterns are found. Note that the ordering of these colors as they appear in the file is very crucial. An example is as follows: ``` /* Runway Clr */ 4 2 /* Landing_Track_Clr */ 3 /* Takeoff_Track_Clr */ /* Touchngo Track_Clr */ 6 255 /* Level 40 Less_Clr */ 237 /* Level 41 To 45 Clr */ 173 /* Level_46_To_50_Clr */ 27 /* Level 51 To_55 Clr */ 102 /* Level_56_To_60_Clr */ 85 /* Level 61 To_65_Clr */ 68 /* Level_66_To_70_Clr */ 50 /* Level_71_To_75_Clr */ /* Level 76 To 80 Clr */ 140 /* Level 81 Greater Clr */ 17 ``` # Help Help is not available directly from the program. For technical problems, please contact your distributor. # 6.0 Program Limitation. - Maximum 2000 points per noise contour. - Runways information input is in FEET (from INM input file). - Tracks information input is in NM (from INM input file). - Shade pattern on hard copy may not be the same as on the screen due to the incompatibility number of colors support by the display and the printer.